Identification of bioactive peptides from a Brazilian kefir sample, and their anti-Alzheimer potential in Drosophila melanogaster

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorMALTA, S. M.
dc.contributor.authorBATISTA, L. L.
dc.contributor.authorSILVA, H. C. G.
dc.contributor.authorFRANCO, R. R.
dc.contributor.authorSILVA, M. H.
dc.contributor.authorRODRIGUES, T. S.
dc.contributor.authorCORREIA, L. I. V.
dc.contributor.authorMARTINS, M. M.
dc.contributor.authorVENTURINI, G.
dc.contributor.authorESPINDOLA, F. S.
dc.contributor.authorSILVA, M. V. da
dc.contributor.authorUEIRA-VIEIRA, C.
dc.date.accessioned2023-10-04T15:11:34Z
dc.date.available2023-10-04T15:11:34Z
dc.date.issued2022
dc.description.abstractAlzheimer’s disease (AD) is the most common form of dementia in the elderly, affecting cognitive, intellectual, and motor functions. Different hypotheses explain AD’s mechanism, such as the amyloidogenic hypothesis. Moreover, this disease is multifactorial, and several studies have shown that gut dysbiosis and oxidative stress influence its pathogenesis. Knowing that kefir is a probiotic used in therapies to restore dysbiosis and that the bioactive peptides present in it have antioxidant properties, we explored its biotechnological potential as a source of molecules capable of modulating the amyloidogenic pathway and reducing oxidative stress, contributing to the treatment of AD. For that, we used Drosophila melanogaster model for AD (AD-like flies). Identification of bioactive peptides in the kefir sample was made by proteomic and peptidomic analyses, followed by in vitro evaluation of antioxidant and acetylcholinesterase inhibition potential. Flies were treated and their motor performance, brain morphology, and oxidative stress evaluated. Finally, we performed molecular docking between the peptides found and the main pathology-related proteins in the flies. The results showed that the fraction with the higher peptide concentration was positive for the parameters evaluated. In conclusion, these results revealed these kefir peptide-rich fractions have therapeutic potential for AD. © 2022, The Author(s).eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexScopus
dc.description.sponsorshipBiotechnology Institute of the University of Uberlândia
dc.description.sponsorshipConselho Nacional Científico e Tecnológico
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES
dc.description.sponsorshipUniversidade Federal de Uberlândia, UFU
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, (303667/2021-4, 312812/2021-3)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais, FAPEMIG, (APQ-02766-17, PPM-00503-18)
dc.identifier.citationSCIENTIFIC REPORTS, v.12, n.1, article ID 11065, p, 2022
dc.identifier.doi10.1038/s41598-022-15297-1
dc.identifier.issn2045-2322
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/55914
dc.language.isoeng
dc.publisherNATURE RESEARCHeng
dc.relation.ispartofScientific Reports
dc.rightsopenAccesseng
dc.rights.holderCopyright NATURE RESEARCHeng
dc.subject.otheracetylcholinesteraseeng
dc.subject.otheralzheimer diseaseeng
dc.subject.otheramyloid beta-peptideseng
dc.subject.otheranimalseng
dc.subject.otherantioxidantseng
dc.subject.otherbrazileng
dc.subject.otherdrosophila melanogastereng
dc.subject.otherdysbiosiseng
dc.subject.otherkefireng
dc.subject.othermolecular docking simulationeng
dc.subject.otherpeptideseng
dc.subject.otherproteomicseng
dc.subject.otheracetylcholinesteraseeng
dc.subject.otheramyloid beta proteineng
dc.subject.otherantioxidanteng
dc.subject.otherkefireng
dc.subject.otherpeptideeng
dc.subject.otheralzheimer diseaseeng
dc.subject.otheranimaleng
dc.subject.otherbrazileng
dc.subject.otherchemistryeng
dc.subject.otherdrosophila melanogastereng
dc.subject.otherdysbiosiseng
dc.subject.othermetabolismeng
dc.subject.othermolecular dockingeng
dc.subject.otherproteomicseng
dc.titleIdentification of bioactive peptides from a Brazilian kefir sample, and their anti-Alzheimer potential in Drosophila melanogastereng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalMALTA, S. M.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil, Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Acre Street, 2E building, room 230, MG, Uberlândia, 38405-319, Brazil
hcfmusp.author.externalBATISTA, L. L.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalSILVA, H. C. G.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalFRANCO, R. R.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalSILVA, M. H.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalRODRIGUES, T. S.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalCORREIA, L. I. V.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalMARTINS, M. M.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalESPINDOLA, F. S.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalSILVA, M. V. da:Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal de Uberlândia, MG, Uberlândia, Brazil
hcfmusp.author.externalUEIRA-VIEIRA, C.:Institute of Biotechnology, Federal University of Uberlândia, MG, Uberlândia, Brazil, Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Acre Street, 2E building, room 230, MG, Uberlândia, 38405-319, Brazil
hcfmusp.citation.scopus16
hcfmusp.contributor.author-fmusphcGABRIELA VENTURINI DA SILVA
hcfmusp.description.articlenumber11065
hcfmusp.description.issue1
hcfmusp.description.volume12
hcfmusp.origemSCOPUS
hcfmusp.origem.pubmed35773306
hcfmusp.origem.scopus2-s2.0-85133134836
hcfmusp.relation.referenceTalwar P., Et al., Dissecting complex and multifactorial nature of Alzheimer’s disease pathogenesis: A clinical, genomic, and systems biology perspective, Mol. Neurobiol., 53, pp. 4833-4864, (2016)eng
hcfmusp.relation.referenceWeller J., Budson A., Portelius E., Reddy H., Current understanding of Alzheimer’s disease diagnosis and treatment, F1000Research, 7, (2018)eng
hcfmusp.relation.referenceNichols E., Et al., Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019, Lancet Public Health, 7, pp. e105-e125, (2022)eng
hcfmusp.relation.referenceBreijyeh Z., Karaman R., Comprehensive review on Alzheimer’s disease: Causes and treatment, Molecules (Basel), 25, (2020)eng
hcfmusp.relation.referenceJellinger K.A., Neuropathological assessment of the Alzheimer spectrum, J. Neural Transm., 127, pp. 1229-1256, (2020)eng
hcfmusp.relation.referenceLane C.A., Hardy J., Schott J.M., Alzheimer’s disease, Eur. J. Neurol., 25, pp. 59-70, (2018)eng
hcfmusp.relation.referenceSharma V.K., Et al., Dysbiosis and Alzheimer’s disease: A role for chronic stress?, Biomolecules, 11, (2021)eng
hcfmusp.relation.referenceKowalski K., Mulak A., Brain-gut-microbiota axis in Alzheimer’s disease, J. Neurogastroenterol. Motil., 25, pp. 48-60, (2019)eng
hcfmusp.relation.referenceBonfili L., Et al., Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels, Sci. Rep., 7, (2017)eng
hcfmusp.relation.referenceWong C.B., Kobayashi Y., Xiao J., Probiotics for preventing cognitive impairment in Alzheimer’s disease, Gut Microbiota Brain Axis., (2018)eng
hcfmusp.relation.referenceNielsen B., Gurakan G.C., Unlu G., Kefir: A multifaceted fermented dairy product, Probiot. Antimicrob. Proteins, 6, pp. 123-135, (2014)eng
hcfmusp.relation.referencePlessas S., Et al., Microbiological exploration of different types of kefir grains, Ferment, 3, (2016)eng
hcfmusp.relation.referenceBatista L.L., Et al., Kefir metabolites in a fly model for Alzheimer’s disease, Sci. Rep., 11, (2021)eng
hcfmusp.relation.referenceTsuda L., Lim Y.-M., Alzheimer’s disease model system using drosophila, Adv. Exp. Med. Biol., 1076, pp. 25-40, (2018)eng
hcfmusp.relation.referenceChakraborty R., Et al., Characterization of a drosophila Alzheimer’s disease model: Pharmacological rescue of cognitive defects, PLoS ONE, 6, (2011)eng
hcfmusp.relation.referenceJeon Y., Lee J.H., Choi B., Won S.Y., Cho K.S., Genetic dissection of Alzheimer’s disease using Drosophila models, Int. J. Mol. Sci., 21, (2020)eng
hcfmusp.relation.referenceJeibmann A., Paulus W., Drosophila melanogaster as a model organism of brain diseases, Int. J. Mol. Sci., 10, pp. 407-440, (2009)eng
hcfmusp.relation.referencePrussing K., Voigt A., Schulz J.B., Drosophila melanogaster as a model organism for Alzheimer’s disease, Mol. Neurodegener., 8, (2013)eng
hcfmusp.relation.referenceTue N.T., Dat T.Q., Ly L.L., Anh V.D., Yoshida H., Insights from Drosophila melanogaster model of Alzheimer’s disease, Front. Biosci. Landmark, 25, pp. 134-146, (2020)eng
hcfmusp.relation.referenceBenzie I.F.F., Strain J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay, Anal. Biochem., 239, pp. 70-76, (1996)eng
hcfmusp.relation.referenceKhurana R., Et al., Mechanism of thioflavin T binding to amyloid fibrils, J. Struct. Biol., 151, pp. 229-238, (2005)eng
hcfmusp.relation.referenceCao Y., Chtarbanova S., Petersen A.J., Ganetzky B., Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain, Proc. Natl. Acad. Sci., 110, pp. E1752-E1760, (2013)eng
hcfmusp.relation.referenceTung M.-C., Et al., Kefir peptides alleviate high-fat diet-induced atherosclerosis by attenuating macrophage accumulation and oxidative stress in ApoE knockout mice, Sci. Rep., 10, pp. 1-15, (2020)eng
hcfmusp.relation.referencePimenta F.S., Et al., Mechanisms of action of kefir in chronic cardiovascular and metabolic diseases, Cell. Physiol. Biochem., 48, pp. 1901-1914, (2018)eng
hcfmusp.relation.referenceHamida R.S., Et al., Kefir: A protective dietary supplementation against viral infection, Biomed. Pharmacother., 133, (2021)eng
hcfmusp.relation.referenceBourrie B.C.T., Richard C., Willing B.P., Kefir in the prevention and treatment of obesity and metabolic disorders, Curr. Nutr. Rep., 9, pp. 184-192, (2020)eng
hcfmusp.relation.referenceAzizi N.F., Et al., Kefir and its biological activities, Foods, 10, (2021)eng
hcfmusp.relation.referenceBarao C.E., Et al., Growth kinetics of kefir biomass: Influence of the incubation temperature in milk, Chem. Eng. Trans., 75, pp. 499-504, (2019)eng
hcfmusp.relation.referenceLondero A., Hamet M.F., De Antoni G.L., Garrote G.L., Abraham A.G., Kefir grains as a starter for whey fermentation at different temperatures: Chemical and microbiological characterisation, J. Dairy Res., 79, pp. 262-271, (2012)eng
hcfmusp.relation.referenceDallas D.C., Et al., Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins, Food Chem., 197, pp. 273-284, (2016)eng
hcfmusp.relation.referenceAmorim F.G., Et al., Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules, Food Chem., 282, pp. 109-119, (2019)eng
hcfmusp.relation.referenceFan M., Et al., Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus, Food Sci. Hum. Wellness, 8, pp. 156-176, (2019)eng
hcfmusp.relation.referenceMarcone S., Belton O., Fitzgerald D.J., Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis, Br. J. Clin. Pharmacol., 83, pp. 152-162, (2017)eng
hcfmusp.relation.referenceNagpal R., Et al., Bioactive peptides derived from milk proteins and their health beneficial potentials: An update, Food Funct., 2, pp. 18-27, (2011)eng
hcfmusp.relation.referenceKaur D., Et al., Multifaceted Alzheimer’s disease: Building a roadmap for advancement of novel therapies, Neurochem. Res., (2021)eng
hcfmusp.relation.referenceZhao Y., Zhao B., Oxidative stress and the pathogenesis of Alzheimer’s disease, Oxid. Med. Cell. Longev., (2013)eng
hcfmusp.relation.referenceNalivaeva N., Turner A., AChE and the amyloid precursor protein (APP)—Cross-talk in Alzheimer’s disease, Chem. Biol. Interact., 259, pp. 301-306, (2016)eng
hcfmusp.relation.referenceTonnies E., Trushina E., Oxidative stress, synaptic dysfunction, and Alzheimer’s disease, J. Alzheimers Dis., 57, pp. 1105-1121, (2017)eng
hcfmusp.relation.referenceHuang W., Zhang X., Chen W., Role of oxidative stress in Alzheimer’s disease, Biomed. Reports, 4, pp. 519-522, (2016)eng
hcfmusp.relation.referenceBirla H., Minocha T., Kumar G., Misra A., Singh S.K., Role of oxidative stress and metal toxicity in the progression of Alzheimer’s disease, Curr. Neuropharmacol., 18, pp. 552-562, (2020)eng
hcfmusp.relation.referenceFerreira-Vieira T.H., Guimaraes I.M., Silva F.R., Ribeiro F.M., Alzheimer’s disease: Targeting the cholinergic system, Curr. Neuropharmacol., 14, (2016)eng
hcfmusp.relation.referenceGrodzicki W., Dziendzikowska K., The role of selected bioactive compounds in the prevention of Alzheimer’s disease, Antioxidants, 9, (2020)eng
hcfmusp.relation.referenceSousa J.C.E., Santana A.C.F., Magalhaes G.J.P., Resveratrol in Alzheimer’s disease: A review of pathophysiology and therapeutic potential, Arq. Neuropsiquiatr., 78, pp. 501-511, (2020)eng
hcfmusp.relation.referenceForlenza O.V., Tratamento farmacológico da doença de Alzheimer, Arch. Clin. Psychiatry (São Paulo), 32, pp. 137-148, (2005)eng
hcfmusp.relation.referenceYiannopoulou K.G., Papageorgiou S.G., Current and future treatments for Alzheimer’s disease, Ther. Adv. Neurol. Disord., 6, (2013)eng
hcfmusp.relation.referenceWang X., Et al., Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models, BMC Complement. Altern. Med., 14, (2014)eng
hcfmusp.relation.referenceChiu W.Y.V., Et al., GULP1/CED-6 ameliorates amyloid-β toxicity in a Drosophila model of Alzheimer’s disease, Oncotarget, 8, pp. 99274-99283, (2017)eng
hcfmusp.relation.referenceda Costa Silva J.R., Et al., Differential gene expression by RNA-seq during Alzheimer’s disease-like progression in the Drosophila melanogaster model, Neurosci. Res., (2022)eng
hcfmusp.relation.referenceYu Z., Et al., Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors, Food Funct., 11, pp. 6643-6651, (2020)eng
hcfmusp.relation.referenceDvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L., Acetylcholinesterase: From 3D structure to function, Chem. Biol. Interact., 187, pp. 10-22, (2010)eng
hcfmusp.relation.referenceHong L., Et al., Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor, Science, 290, pp. 150-153, (2000)eng
hcfmusp.relation.referenceHong L., Tang J., Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis†,‡, Biochemistry, 43, pp. 4689-4695, (2004)eng
hcfmusp.relation.referenceJames M.N., Sielecki A., Salituro F., Rich D.H., Hofmann T., Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin, Proc. Natl. Acad. Sci., 79, pp. 6137-6141, (1982)eng
hcfmusp.relation.referenceShimizu H., Et al., Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production, Mol. Cell. Biol., 28, pp. 3663-3671, (2008)eng
hcfmusp.relation.referenceRay B., Et al., Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease, Transl. Psychiatry, 10, pp. 1-17, (2020)eng
hcfmusp.relation.referenceLuheshi L.M., Et al., Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity, PLoS Biol., 5, (2007)eng
hcfmusp.relation.referenceXiao Y., Et al., Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease, Nat. Struct. Mol. Biol., 22, pp. 499-505, (2015)eng
hcfmusp.relation.referenceRhee I.K., Van De Meent M., Ingkaninan K., Verpoorte R., Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining, J. Chromatogr. A, 915, pp. 217-223, (2001)eng
hcfmusp.relation.referenceGargano J.W., Martin I., Bhandari P., Grotewiel M.S., Rapid iterative negative geotaxis (RING): A new method for assessing age-related locomotor decline in Drosophila, Exp. Gerontol., 40, pp. 386-395, (2005)eng
hcfmusp.relation.referenceEllman G.L., Courtney K.D., Andres V., Featherstone R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 7, pp. 88-95, (1961)eng
hcfmusp.relation.referenceWestfall S., Lomis N., Prakash S., A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster, PLoS ONE, 14, (2019)eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication11107a70-e1cc-4e74-9dbc-cae210e58af5
relation.isAuthorOfPublication.latestForDiscovery11107a70-e1cc-4e74-9dbc-cae210e58af5
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_MALTA_Identification_of_bioactive_peptides_from_a_Brazilian_kefir_2022.PDF
Tamanho:
4.52 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)