Effects of Exercise on Structural and Functional Brain Patterns in Schizophrenia-Data From a Multicenter Randomized-Controlled Study

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
ROELL, Lukas
KEESER, Daniel
PAPAZOV, Boris
LEMBECK, Moritz
PAPAZOVA, Irina
GRESKA, David
MUENZ, Susanne
SCHNEIDER-AXMANN, Thomas
SYKOROVA, Eliska B.
THIEME, Christina E.
Citação
SCHIZOPHRENIA BULLETIN, v.50, n.1, p.145-156, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Hypothesis: Aerobic exercise interventions in people with schizophrenia have been demonstrated to improve clinical outcomes, but findings regarding the underlying neural mechanisms are limited and mainly focus on the hippocampal formation. Therefore, we conducted a global exploratory analysis of structural and functional neural adaptations after exercise and explored their clinical implications.Study Design: In this randomized controlled trial, structural and functional MRI data were available for 91 patients with schizophrenia who performed either aerobic exercise on a bicycle ergometer or underwent a flexibility, strengthening, and balance training as control group. We analyzed clinical and neuroimaging data before and after 6 months of regular exercise. Bayesian linear mixed models and Bayesian logistic regressions were calculated to evaluate effects of exercise on multiple neural outcomes and their potential clinical relevance.Study Results: Our results indicated that aerobic exercise in people with schizophrenia led to structural and functional adaptations mainly within the default-mode network, the cortico-striato-pallido-thalamo-cortical loop, and the cerebello-thalamo-cortical pathway. We further observed that volume increases in the right posterior cingulate gyrus as a central node of the default-mode network were linked to improvements in disorder severity.Conclusions: These exploratory findings suggest a positive impact of aerobic exercise on 3 cerebral networks that are involved in the pathophysiology of schizophrenia.
Palavras-chave
schizophrenia, exercise, brain structure, functional connectivity, randomized-controlled trial
Referências
  1. Abram SV, 2022, MOL PSYCHIATR, V27, P2448, DOI 10.1038/s41380-022-01502-0
  2. Adriano F, 2012, NEUROSCIENTIST, V18, P180, DOI 10.1177/1073858410395147
  3. Andreasen NC, 1998, SCHIZOPHRENIA BULL, V24, P203, DOI 10.1093/oxfordjournals.schbul.a033321
  4. Anticevic A, 2015, JAMA PSYCHIAT, V72, P882, DOI 10.1001/jamapsychiatry.2015.0566
  5. Anticevic A, 2014, CEREB CORTEX, V24, P3116, DOI 10.1093/cercor/bht165
  6. Anticevic A, 2014, SCHIZOPHRENIA BULL, V40, P1227, DOI 10.1093/schbul/sbu100
  7. Ashdown-Franks G, 2020, SPORTS MED, V50, P151, DOI 10.1007/s40279-019-01187-6
  8. Avila C, 2015, CURR OBES REP, V4, P303, DOI 10.1007/s13679-015-0164-9
  9. Avram M, 2020, BRAIN, V143, P3495, DOI 10.1093/brain/awaa296
  10. Avram M, 2018, NEUROPSYCHOPHARMACOL, V43, P2239, DOI 10.1038/s41386-018-0059-z
  11. Benes FM, 2010, NEUROPSYCHOPHARMACOL, V35, P239, DOI 10.1038/npp.2009.116
  12. Brandl F, 2019, BIOL PSYCHIAT, V85, P573, DOI 10.1016/j.biopsych.2018.12.003
  13. Bray NW, 2021, MECH AGEING DEV, V196, DOI 10.1016/j.mad.2021.111493
  14. Brugger SP, 2017, JAMA PSYCHIAT, V74, P1104, DOI 10.1001/jamapsychiatry.2017.2663
  15. Bürkner PC, 2017, J STAT SOFTW, V80, P1, DOI 10.18637/jss.v080.i01
  16. Busner Joan, 2007, Psychiatry (Edgmont), V4, P28
  17. Cao HY, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0531-5
  18. Cao H, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06350-7
  19. Cui Y, 2022, BRIT J PSYCHIAT, V221, P732, DOI 10.1192/bjp.2022.22
  20. Damme KSF, 2022, SCHIZOPHRENIA BULL, V48, P1394, DOI 10.1093/schbul/sbac084
  21. Dauwan M, 2016, SCHIZOPHRENIA BULL, V42, P588, DOI 10.1093/schbul/sbv164
  22. Dean DJ, 2017, J CLIN PSYCHIAT, V78, pE1167, DOI 10.4088/JCP.16m11365
  23. Domingos C, 2021, BEHAV BRAIN RES, V402, DOI 10.1016/j.bbr.2020.113061
  24. Dong DB, 2018, SCHIZOPHRENIA BULL, V44, P168, DOI 10.1093/schbul/sbx034
  25. ENDICOTT J, 1976, ARCH GEN PSYCHIAT, V33, P766
  26. Esteban O, 2019, NAT METHODS, V16, P111, DOI 10.1038/s41592-018-0235-4
  27. Falkai P, 2021, EUR ARCH PSY CLIN N, V271, P1201, DOI 10.1007/s00406-021-01282-8
  28. Falkai P, 2020, EUR ARCH PSY CLIN N, V270, P413, DOI 10.1007/s00406-019-01067-0
  29. Farhani F, 2022, BRAIN SCI, V12, DOI 10.3390/brainsci12060732
  30. Fernández-Abascal B, 2021, NEUROSCI BIOBEHAV R, V125, P535, DOI 10.1016/j.neubiorev.2021.01.005
  31. Firth J, 2015, PSYCHOL MED, V45, P1343, DOI 10.1017/S0033291714003110
  32. Firth J, 2017, BRIT J PHARMACOL, V174, P3161, DOI 10.1111/bph.13772
  33. Firth J, 2017, SCHIZOPHRENIA BULL, V43, P546, DOI 10.1093/schbul/sbw115
  34. Friston K, 2016, SCHIZOPHR RES, V176, P83, DOI 10.1016/j.schres.2016.07.014
  35. Goodkind M, 2015, JAMA PSYCHIAT, V72, P305, DOI 10.1001/jamapsychiatry.2014.2206
  36. Herrmann MJ, 2019, OBES REV, V20, P464, DOI 10.1111/obr.12799
  37. Hoeflich A, 2015, INT J NEUROPSYCHOPH, V18, DOI 10.1093/ijnp/pyv040
  38. Honea R, 2005, AM J PSYCHIAT, V162, P2233, DOI 10.1176/appi.ajp.162.12.2233
  39. Jalbrzikowski M, 2021, JAMA PSYCHIAT, V78, P753, DOI 10.1001/jamapsychiatry.2021.0638
  40. Ji JL, 2019, CEREB CORTEX, V29, P4463, DOI 10.1093/cercor/bhy306
  41. Ji LX, 2021, INT J GERIATR PSYCH, V36, P1148, DOI 10.1002/gps.5510
  42. Kandola A, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00373
  43. KAY SR, 1987, SCHIZOPHRENIA BULL, V13, P261, DOI 10.1093/schbul/13.2.261
  44. Khonsari NM, 2022, J PSYCHOSOC NURS MEN, V60, P37, DOI 10.3928/02793695-20211014-03
  45. Kuo SS, 2019, NEUROSCI BIOBEHAV R, V98, P85, DOI 10.1016/j.neubiorev.2018.12.030
  46. Laird AR, 2011, J COGNITIVE NEUROSCI, V23, P4022, DOI 10.1162/jocn_a_00077
  47. Li L, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.955741
  48. Li MY, 2017, INT J NEUROSCI, V127, P634, DOI 10.1080/00207454.2016.1212855
  49. Lin JX, 2015, NPJ SCHIZOPHR, V1, DOI 10.1038/npjschz.2015.47
  50. Liu PZ, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00052
  51. Liu-Ambrose T, 2010, ARCH INTERN MED, V170, P170, DOI 10.1001/archinternmed.2009.494
  52. Llorca PM, 2009, SCHIZOPHR RES, V113, P218, DOI 10.1016/j.schres.2009.04.029
  53. Lui S, 2015, PSYCHOL MED, V45, P97, DOI 10.1017/S003329171400110X
  54. Mak LE, 2017, BRAIN CONNECT, V7, P25, DOI 10.1089/brain.2016.0438
  55. Malchow B, 2016, SCHIZOPHR RES, V173, P182, DOI 10.1016/j.schres.2015.01.005
  56. Manu P, 2015, ACTA PSYCHIAT SCAND, V132, P97, DOI 10.1111/acps.12445
  57. Matsuda Y, 2018, NEUROPSYCH DIS TREAT, V14, P1861, DOI 10.2147/NDT.S145273
  58. Maurus I, 2022, TRANSL PSYCHIAT, V12, DOI 10.1038/s41398-022-02155-x
  59. Maurus I, 2022, SCHIZOPHRENIA-UK, V8, DOI 10.1038/s41537-022-00269-1
  60. Maurus I, 2021, EUR ARCH PSY CLIN N, V271, P315, DOI 10.1007/s00406-020-01175-2
  61. Maurus I, 2019, EUR ARCH PSY CLIN N, V269, P499, DOI 10.1007/s00406-019-01025-w
  62. McEwen SC, 2023, SCHIZOPHR RES, V251, P12, DOI 10.1016/j.schres.2022.12.001
  63. McEwen SC, 2015, J INT NEUROPSYCH SOC, V21, P868, DOI 10.1017/S1355617715000983
  64. O'Neill A, 2019, SCHIZOPHRENIA BULL, V45, P579, DOI 10.1093/schbul/sby094
  65. Pajonk FG, 2010, ARCH GEN PSYCHIAT, V67, P133, DOI 10.1001/archgenpsychiatry.2009.193
  66. Parsons N, 2022, REV ENDOCR METAB DIS, V23, P861, DOI 10.1007/s11154-021-09665-x
  67. R Core Team, 2020, R: a language and environment for statistical computing
  68. Rege S, 2008, AUST NZ J PSYCHIAT, V42, P369, DOI 10.1080/00048670801961123
  69. Roell L, 2022, EUR ARCH PSY CLIN N, V272, P1253, DOI 10.1007/s00406-022-01411-x
  70. RStudio Team, 2020, RStudio. Integrated Development for R
  71. Sabe M, 2020, GEN HOSP PSYCHIAT, V62, P13, DOI 10.1016/j.genhosppsych.2019.11.002
  72. Sasabayashi D, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-021-01297-8
  73. Scheewe TW, 2013, EUR NEUROPSYCHOPHARM, V23, P675, DOI 10.1016/j.euroneuro.2012.08.008
  74. Schmitt A, 2019, EUR ARCH PSY CLIN N, V269, P483, DOI 10.1007/s00406-019-01037-6
  75. Sha ZQ, 2019, BIOL PSYCHIAT, V85, P379, DOI 10.1016/j.biopsych.2018.11.011
  76. Shimada T, 2022, PSYCHIAT RES, V314, DOI 10.1016/j.psychres.2022.114656
  77. Stahl SM, 2018, CNS SPECTRUMS, V23, P187, DOI 10.1017/S1092852918001013
  78. Svatkova A, 2015, SCHIZOPHRENIA BULL, V41, P869, DOI 10.1093/schbul/sbv033
  79. Syan SK, 2021, NEUROSCI BIOBEHAV R, V131, P270, DOI 10.1016/j.neubiorev.2021.08.019
  80. Takahashi S, 2020, SCHIZOPHR RES, V216, P397, DOI 10.1016/j.schres.2019.11.004
  81. Tek C, 2016, EARLY INTERV PSYCHIA, V10, P193, DOI 10.1111/eip.12251
  82. Tu PC, 2015, SCHIZOPHR RES, V166, P137, DOI 10.1016/j.schres.2015.05.023
  83. van der Stouwe ECD, 2018, NEUROIMAGE-CLIN, V19, P287, DOI 10.1016/j.nicl.2018.04.018
  84. van Erp TGM, 2016, MOL PSYCHIATR, V21, P585, DOI 10.1038/mp.2015.118
  85. van Erp TGM, 2018, BIOL PSYCHIAT, V84, P644, DOI 10.1016/j.biopsych.2018.04.023
  86. Vancampfort D, 2015, SCHIZOPHR RES, V169, P453, DOI 10.1016/j.schres.2015.09.029
  87. Vancampfort D, 2014, DISABIL REHABIL, V36, P1749, DOI 10.3109/09638288.2013.874505
  88. Vogel JS, 2019, PSYCHIAT RES, V279, P295, DOI 10.1016/j.psychres.2019.03.012
  89. Vorkapic C, 2021, ARQ NEURO-PSIQUIAT, V79, P536, DOI [10.1590/0004-282X-ANP-2020-0166, 10.1590/0004-282x-anp-2020-0166]
  90. Welsh RC, 2010, SCHIZOPHRENIA BULL, V36, P713, DOI 10.1093/schbul/sbn145
  91. Wickham H., 2016, ggplot2: Elegant Graphics for Data Analysis, DOI [10.1007/978-3-319-24277-4, DOI 10.1007/978-3-319-24277-4]
  92. Woodward ML, 2018, SCHIZOPHR RES, V202, P158, DOI 10.1016/j.schres.2018.06.054
  93. Woodward ND, 2016, BIOL PSYCHIAT, V79, P1016, DOI 10.1016/j.biopsych.2015.06.026
  94. Woodward ND, 2012, AM J PSYCHIAT, V169, P1092, DOI 10.1176/appi.ajp.2012.12010056
  95. Xu YH, 2022, PSYCHIAT RES, V312, DOI 10.1016/j.psychres.2022.114560
  96. Yeo BTT, 2011, J NEUROPHYSIOL, V106, P1125, DOI 10.1152/jn.00338.2011
  97. Zhao YJ, 2022, JAMA PSYCHIAT, V79, P560, DOI 10.1001/jamapsychiatry.2022.0799