Clinical outcome from hematopoietic cell transplant patients with bloodstream infection caused by carbapenem-resistant P. aeruginosa and the impact of antimicrobial combination in vitro

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, v.41, n.2, p.313-317, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Bloodstream infection (BSI) caused by carbapenem-resistant P. aeruginosa (CRPA) has high mortality in hematopoietic stem cell transplant (HSCT) recipients. We performed MIC, checkerboard, time-kill assay, PFGE, PCR, and whole genome sequence and described the clinical outcome through Epi Info comparing the antimicrobial combination in vitro. Mortality was higher in BSI caused by CRPA carrying the lasB virulence gene. The isolates were 97% resistant to meropenem displaying synergistic effect to 57% in combination with colistin. Seventy-three percent of the isolates harbored bla(SPM-1) and Tn4371 and belonged to ST277. The synergistic effect in vitro with meropenem with colistin appeared to be a better therapeutic option.
Palavras-chave
Carbapenem-resistant Pseudomonas aeruginosa, Multidrug resistance, Virulence, Synergism, Stem cell transplant, Bloodstream infection
Referências
  1. Andria N, 2015, J ANTIMICROB CHEMOTH, V70, P3146, DOI 10.1093/jac/dkv218
  2. Assefa S, 2009, BIOINFORMATICS, V25, P1968, DOI 10.1093/bioinformatics/btp347
  3. Chaves L, 2017, J MED MICROBIOL, V66, P1722, DOI [10.1099/jmm.0.000631, 10.1099/jmm.]
  4. Clinical and Laboratory Standard Institute, 2014, M100S24 CLSI
  5. El Zowalaty ME, 2015, FUTURE MICROBIOL, V10, P1683, DOI 10.2217/fmb.15.48
  6. El-Solh AA, 2012, CRIT CARE MED, V40, P1157, DOI 10.1097/CCM.0b013e3182377906
  7. Estepa V, 2017, ENFERM INFEC MICR CL, V35, P141, DOI 10.1016/j.eimc.2015.12.014
  8. Freifeld AG, 2011, CLIN INFECT DIS, V52, pE56, DOI 10.1093/cid/cir073
  9. Gomez-Zorrilla S, 2016, INT J ANTIMICROB AG, V47, P368, DOI 10.1016/j.ijantimicag.2016.02.010
  10. Goncalves IR, 2017, BRAZ J MICROBIOL, V48, P211, DOI 10.1016/j.bjm.2016.11.004
  11. He W, 2012, DIAGN MICR INFEC DIS, V74, P417, DOI 10.1016/j.diagmicrobio.2012.08.014
  12. Heidenreich D, 2017, EUR J HAEMATOL, V98, P485, DOI 10.1111/ejh.12859
  13. Hopkins KL, 2016, J MED MICROBIOL, V65, P696, DOI 10.1099/jmm.0.000269
  14. Horan TC, 2008, AM J INFECT CONTROL, V36, P309, DOI 10.1016/j.ajic.2008.03.002
  15. Hu YM, 2013, INT J ANTIMICROB AG, V42, P492, DOI 10.1016/j.ijantimicag.2013.09.002
  16. Lorian V, 2005, ANTIMICROBIAL COMBIN
  17. Mellouli Ameni, 2021, Tunis Med, V99, P269
  18. Mendes RE, 2007, J CLIN MICROBIOL, V45, P544, DOI 10.1128/JCM.01728-06
  19. Mikhail S, 2019, ANTIMICROB AGENTS CH, V63, DOI 10.1128/AAC.00779-19
  20. Moellering RC, 1996, ANTIBIOTICS LAB MED, P330
  21. Pena C, 2015, CLIN INFECT DIS, V60, P539, DOI 10.1093/cid/ciu866
  22. Pena C, 2013, CLIN INFECT DIS, V57, P208, DOI 10.1093/cid/cit223
  23. Pereira SG, 2015, VIRULENCE, V6, P679, DOI 10.1080/21505594.2015.1048958
  24. Petersen PJ, 2006, J ANTIMICROB CHEMOTH, V57, P573, DOI 10.1093/jac/dki477
  25. Rhee JY, 2009, SHOCK, V31, P146, DOI 10.1097/SHK.0b013e318182f98f
  26. Seemann T, 2014, BIOINFORMATICS, V30, P2068, DOI 10.1093/bioinformatics/btu153
  27. Shi H, 2012, APPL MICROBIOL BIOT, V95, P1579, DOI 10.1007/s00253-012-4277-8
  28. Silva FM, 2011, MICROB DRUG RESIST, V17, P215, DOI 10.1089/mdr.2010.0140
  29. Silveira MC, 2016, INFECT GENET EVOL, V42, P60, DOI 10.1016/j.meegid.2016.04.024
  30. Veesenmeyer JL, 2009, CRIT CARE MED, V37, P1777, DOI 10.1097/CCM.0b013e31819ff137
  31. Wang L, 2015, MEDICINE, V94, DOI 10.1097/MD.0000000000001931
  32. Zusman O, 2013, ANTIMICROB AGENTS CH, V57, P5104, DOI 10.1128/AAC.01230-13