Synbiotic Supplementation Modulates Gut Microbiota, Regulates beta-Catenin Expression and Prevents Weight Gain in ob/ob Mice: Preliminary Findings

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Editora
MDPI
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Métricas da Revista
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, n.18, article ID 10483, 16p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Obesity is one of the main health problems in the world today, and dysbiosis seems to be one of the factors involved. The aim of this study was to examine the impact of synbiotic supplementation on obesity and the microbiota in ob/ob mice. Twenty animals were divided into four groups: obese treated (OT), obese control (OC), lean treated (LT) and lean control (LC). All animals received a standard diet for 8 weeks. The treated groups received a synbiotic (Simbioflora-Invictus Farmanutricao Ltd., Sao Paulo, Brazil) in water, while the nontreated groups received only water. After 8 weeks, all animals were sacrificed, and gut tissue and stool samples were collected for mRNA isolation and microbiota analysis, respectively. beta-Catenin, occludin, cadherin and zonulin in the gut tissue were analyzed via RT-qPCR. Microbiome DNA was extracted from stool samples and sequenced using an Ion PGM Torrent platform. Results: Synbiotic supplementation reduced body weight gain in the OT group compared with the OC group (p = 0.0398) and was associated with an increase in Enterobacteriaceae (p = 0.005) and a decrease in Cyanobacteria (p = 0.047), Clostridiaceae (p = 0.026), Turicibacterales (p = 0.005) and Coprococcus (p = 0.047). On the other hand, a significant reduction in Sutterella (p = 0.009) and Turicibacter (p = 0.005) bacteria was observed in the LT group compared to the LC group. Alpha and beta diversities were different among all treated groups. beta-Catenin gene expression was significantly decreased in the gut tissue of the OT group (p <= 0.0001) compared to the other groups. No changes were observed in occludin, cadherin or zonulin gene expression in the gut tissue. Conclusions: Synbiotic supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces beta-catenin expression in ob/ob mice.
Palavras-chave
gut microbiota, synbiotic supplementation, probiotics, prebiotics, ob, ob mice
Referências
  1. Ahmad A, 2019, METABOLISM, V90, P31, DOI 10.1016/j.metabol.2018.10.004
  2. Ali MS, 2019, RSC ADV, V9, P29368, DOI 10.1039/c9ra04388h
  3. Anstee QM, 2006, INT J EXP PATHOL, V87, P1, DOI 10.1111/j.0959-9673.2006.00465.x
  4. Auchtung TA, 2016, GENOME ANNOUNCEMENTS, V4, DOI 10.1128/genomeA.00114-16
  5. Basu Sayon, 2018, F1000Res, V7, DOI 10.12688/f1000research.15782.1
  6. Benzler J, 2013, ENDOCRINOLOGY, V154, P4737, DOI 10.1210/en.2013-1746
  7. Campbell HK, 2017, EXP CELL RES, V358, P39, DOI 10.1016/j.yexcr.2017.03.061
  8. Caporaso JG, 2011, P NATL ACAD SCI USA, V108, P4516, DOI 10.1073/pnas.1000080107
  9. Cesaro C, 2011, DIGEST LIVER DIS, V43, P431, DOI 10.1016/j.dld.2010.10.015
  10. Cotillard A, 2013, NATURE, V500, P585, DOI 10.1038/nature12480
  11. DeSantis TZ, 2006, APPL ENVIRON MICROB, V72, P5069, DOI 10.1128/AEM.03006-05
  12. Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461
  13. Everard A, 2014, ISME J, V8, P2116, DOI 10.1038/ismej.2014.45
  14. Ferrario C, 2014, J NUTR, V144, P1787, DOI 10.3945/jn.114.197723
  15. Goldenberg JZ, 2013, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD006095.pub3
  16. Goretsky T, 2016, J BIOL CHEM, V291, P4166, DOI 10.1074/jbc.M115.669416
  17. Halmos T, 2016, ORVOSI HETILAP, V157, P13, DOI 10.1556/650.2015.30296
  18. Hiippala K, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01706
  19. Horie M, 2017, EXP ANIM TOKYO, V66, P405, DOI 10.1538/expanim.17-0021
  20. Houschyar KS, 2018, INT J ARTIF ORGANS, V41, P247, DOI 10.1177/0391398818762357
  21. Ipsen DH, 2018, CELL MOL LIFE SCI, V75, P3313, DOI 10.1007/s00018-018-2860-6
  22. Jayakumar S, 2019, ALIMENT PHARM THER, V50, P144, DOI 10.1111/apt.15314
  23. Jia QJ, 2020, PHARMACOL RES, V151, DOI 10.1016/j.phrs.2019.104552
  24. Jiao N, 2018, PHYSIOL GENOMICS, V50, P244, DOI 10.1152/physiolgenomics.00114.2017
  25. Kaplan RC, 2019, GENOME BIOL, V20, DOI 10.1186/s13059-019-1831-z
  26. Ku CS, 2013, J MED FOOD, V16, P103, DOI 10.1089/jmf.2012.2468
  27. Kuczynski Justin, 2011, Curr Protoc Bioinformatics, VChapter 10, DOI [10.1002/9780471729259.mc01e05s27, 10.1002/0471250953.bi1007s36]
  28. Kuugbee ED, 2016, DIGEST DIS SCI, V61, P2908, DOI 10.1007/s10620-016-4238-7
  29. Le Chatelier E, 2013, NATURE, V500, P541, DOI 10.1038/nature12506
  30. Liu JP, 2016, WORLD J GASTROENTERO, V22, P7353, DOI 10.3748/wjg.v22.i32.7353
  31. Madrid AM, 2011, DIGEST DIS SCI, V56, P155, DOI 10.1007/s10620-010-1239-9
  32. Monga SP, 2015, GASTROENTEROLOGY, V148, P1294, DOI 10.1053/j.gastro.2015.02.056
  33. Pedrogo DAM, 2019, INFLAMM BOWEL DIS, V25, P902, DOI 10.1093/ibd/izy318
  34. Niessen CM, 2007, J INVEST DERMATOL, V127, P2525, DOI 10.1038/sj.jid.5700865
  35. Pelletier RM, 2020, REPROD BIOL ENDOCRIN, V18, DOI 10.1186/s12958-020-00583-2
  36. Sanders ME, 2019, NAT REV GASTRO HEPAT, V16, P605, DOI 10.1038/s41575-019-0173-3
  37. Schinner S, 2009, HORM METAB RES, V41, P159, DOI 10.1055/s-0028-1119408
  38. Schrezenmeir J, 2001, AM J CLIN NUTR, V73, p361S, DOI 10.1093/ajcn/73.2.361s
  39. Sekirov I, 2010, PHYSIOL REV, V90, P859, DOI 10.1152/physrev.00045.2009
  40. Shao YK, 2017, OBES SURG, V27, P295, DOI 10.1007/s11695-016-2297-7
  41. Shimizu H, 2015, MICROBIOL IMMUNOL, V59, P643, DOI 10.1111/1348-0421.12332
  42. Shinde T, 2020, EUR J NUTR, V59, P3669, DOI 10.1007/s00394-020-02200-9
  43. Sneddon LU, 2017, J EXP BIOL, V220, P3007, DOI 10.1242/jeb.147058
  44. Tao JY, 2014, GASTROENTEROLOGY, V147, P690, DOI 10.1053/j.gastro.2014.05.004
  45. Valdes AM, 2018, BMJ-BRIT MED J, V361, DOI 10.1136/bmj.j2179
  46. Vallianou N, 2020, CURR OBES REP, V9, P179, DOI 10.1007/s13679-020-00379-w
  47. Vazquez-Baeza Y, 2013, GIGASCIENCE, V2, DOI 10.1186/2047-217X-2-16
  48. Velazquez KT, 2019, WORLD J HEPATOL, V11, P619, DOI 10.4254/wjh.v11.i8.619
  49. Xie CC, 2019, NUTRIENTS, V11, DOI 10.3390/nu11112837
  50. Yao FF, 2019, ARCH MED SCI, V15, P1336, DOI 10.5114/aoms.2019.86611
  51. Zamparelli MS, 2017, UNITED EUR GASTROENT, V5, P944, DOI 10.1177/2050640617705576
  52. Zheng YJ, 2021, PHYTOMEDICINE, V88, DOI 10.1016/j.phymed.2020.153455
  53. Zhou ZW, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00371