Sympathetic Neural Overdrive, Aortic Stiffening, Endothelial Dysfunction, and Impaired Exercise Capacity in Severe COVID-19 Survivors: A Mid-Term Study of Cardiovascular Sequelae

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
FARIA, Diego
MOLL-BERNARDES, Renata J.
TESTA, Laura
MONIZ, Camila M. V.
RODRIGUES, Erika C.
ARAUJO, Amanda
ONO, Bruna E.
IZAIAS, Joao E.
Citação
HYPERTENSION, v.80, n.2, p.470-481, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background:COVID-19 has become a dramatic health problem during this century. In addition to high mortality rate, COVID-19 survivors are at increased risk for cardiovascular diseases 1-year after infection. Explanations for these manifestations are still unclear but can involve a constellation of biological alterations. We hypothesized that COVID-19 survivors compared with controls exhibit sympathetic overdrive, vascular dysfunction, cardiac morpho-functional changes, impaired exercise capacity, and increased oxidative stress. Methods:Nineteen severe COVID-19 survivors and 19 well-matched controls completed the study. Muscle sympathetic nerve activity (microneurography), brachial artery flow-mediated dilation and blood flow (Doppler-Ultrasound), carotid-femoral pulse wave velocity (Complior), cardiac morpho-functional parameters (echocardiography), peak oxygen uptake (cardiopulmonary exercise testing), and oxidative stress were measured similar to 3 months after hospital discharge. Complementary experiments were conducted on human umbilical vein endothelial cells cultured with plasma samples from subjects. Results:Muscle sympathetic nerve activity and carotid-femoral pulse wave velocity were greater and brachial artery flow-mediated dilation, brachial artery blood flow, E/e ' ratio, and peak oxygen uptake were lower in COVID-19 survivors than in controls. COVID-19 survivors had lower circulating antioxidant markers compared with controls, but there were no differences in plasma-treated human umbilical vein endothelial cells nitric oxide production and reactive oxygen species bioactivity. Diminished peak oxygen uptake was associated with sympathetic overdrive, vascular dysfunction, and reduced diastolic function in COVID-19 survivors. Conclusions:Our study revealed that COVID-19 survivors have sympathetic overactivation, vascular dysfunction, cardiac morpho-functional changes, and reduced exercise capacity. These findings indicate the need for further investigation to determine whether these manifestations are persistent longer-term and their impact on the cardiovascular health of COVID-19 survivors.
Palavras-chave
arterial stiffness, endothelium, exercise capacity, oxidative stress, SARS-CoV-2, sympathetic activity
Referências
  1. Al-Aly Z, 2021, NATURE, V594, P259, DOI 10.1038/s41586-021-03553-9
  2. ANDERSEN P, 1985, J APPL PHYSIOL, V59, P1647, DOI 10.1152/jappl.1985.59.5.1647
  3. Andreas S, 2014, LUNG, V192, P235, DOI 10.1007/s00408-013-9544-7
  4. Aranyo J, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-03831-6
  5. Atkinson G, 2013, ATHEROSCLEROSIS, V226, P425, DOI 10.1016/j.atherosclerosis.2012.11.027
  6. Ballak DB, 2020, AGING CELL, V19, DOI 10.1111/acel.13074
  7. Banerjee A, 2020, LANCET, V395, P1715, DOI 10.1016/S0140-6736(20)30854-0
  8. Barretto ACP, 2009, INT J CARDIOL, V135, P302, DOI 10.1016/j.ijcard.2008.03.056
  9. Baselli G, 1997, IEEE T BIO-MED ENG, V44, P1092, DOI 10.1109/10.641336
  10. BEYER WF, 1986, BIOCHEMISTRY-US, V25, P6084, DOI 10.1021/bi00368a037
  11. Broxterman RM, 2020, J PHYSIOL-LONDON, V598, P599, DOI 10.1113/JP279135
  12. Brunt VE, 2018, J PHYSIOL-LONDON, V596, P4831, DOI 10.1113/JP276559
  13. Butt M, 2011, HYPERTENSION, V58, P417, DOI 10.1161/HYPERTENSIONAHA.111.170910
  14. Cameli M, 2020, J HYPERTENS, V38, P588, DOI 10.1097/HJH.0000000000002323
  15. Craighead DH, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.121.020980
  16. du Preez HN, 2022, FASEB J, V36, DOI 10.1096/fj.202101100RR
  17. Esposito F, 2010, J AM COLL CARDIOL, V55, P1945, DOI 10.1016/j.jacc.2009.11.086
  18. Gamboa A, 2016, HYPERTENSION, V68, P1004, DOI 10.1161/HYPERTENSIONAHA.116.07681
  19. Gao YP, 2022, FRONT MED-LAUSANNE, V9, DOI 10.3389/fmed.2022.809033
  20. Granger JP, 1999, AM J PHYSIOL-REG I, V276, pR197, DOI 10.1152/ajpregu.1999.276.1.R197
  21. Gupta A, 2020, NAT MED, V26, P1017, DOI 10.1038/s41591-020-0968-3
  22. Harada PH, 2019, ATHEROSCLEROSIS, V284, P59, DOI 10.1016/j.atherosclerosis.2019.02.005
  23. Ikonomidis I, 2022, EUR J HEART FAIL, V24, P727, DOI 10.1002/ejhf.2451
  24. Irigoyen MC, 2005, HYPERTENSION, V46, P998, DOI 10.1161/01.HYP.0000176238.90688.6b
  25. Jamal SM, 2022, J AM COLL CARDIOL, V79, P2325, DOI 10.1016/j.jacc.2022.03.357
  26. Keir DA, 2020, HYPERTENSION, V76, P997, DOI 10.1161/HYPERTENSIONAHA.120.15208
  27. Sales ARK, 2019, AM J PHYSIOL-HEART C, V317, pH1, DOI 10.1152/ajpheart.00756.2018
  28. Lambadiari V, 2021, EUR J HEART FAIL, V23, P1916, DOI 10.1002/ejhf.2326
  29. Limberg JK, 2020, AM J PHYSIOL-HEART C, V318, pH301, DOI 10.1152/ajpheart.00649.2019
  30. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  31. Machado BH, 2021, AUTON NEUROSCI-BASIC, V233, DOI 10.1016/j.autneu.2021.102810
  32. MONTANO N, 1994, CIRCULATION, V90, P1826, DOI 10.1161/01.CIR.90.4.1826
  33. Moody WE, 2021, J AM SOC ECHOCARDIOG, V34, P562, DOI 10.1016/j.echo.2021.01.020
  34. Myers J, 2009, CIRCULATION, V119, P3144, DOI 10.1161/CIRCULATIONAHA.109.192520
  35. Nandadeva D, 2021, AM J PHYSIOL-HEART C, V321, pH479, DOI 10.1152/ajpheart.00368.2021
  36. Nardone M, 2020, AM J PHYSIOL-HEART C, V319, pH1338, DOI 10.1152/ajpheart.00734.2020
  37. Narkiewicz K, 1998, CIRCULATION, V98, P772, DOI 10.1161/01.CIR.98.8.772
  38. Narkiewicz K, 2005, HYPERTENSION, V45, P522, DOI 10.1161/01.HYP.0000160318.46725.46
  39. O'Neill JO, 2005, CIRCULATION, V111, P2313, DOI 10.1161/01.CIR.0000164270.72123.18
  40. Pagani M, 1996, ANN NY ACAD SCI, V783, P10, DOI 10.1111/j.1749-6632.1996.tb26704.x
  41. Potter E, 2018, JACC-CARDIOVASC IMAG, V11, P260, DOI 10.1016/j.jcmg.2017.11.017
  42. Ratchford SM, 2021, AM J PHYSIOL-HEART C, V320, pH404, DOI 10.1152/ajpheart.00897.2020
  43. Moreira FRR, 2021, VIRUS EVOL, V7, DOI 10.1093/ve/veab087
  44. REID IA, 1992, AM J PHYSIOL, V262, pE763, DOI 10.1152/ajpendo.1992.262.6.E763
  45. Rinaldo RF, 2021, EUR RESPIR J, V58, DOI 10.1183/13993003.00870-2021
  46. Rossman MJ, 2021, HYPERTENSION, V77, P1212, DOI 10.1161/HYPERTENSIONAHA.120.16175
  47. Rumantir MS, 1999, J HYPERTENS, V17, P1125, DOI 10.1097/00004872-199917080-00012
  48. Sales ARK, 2020, CIRC-HEART FAIL, V13, DOI 10.1161/CIRCHEARTFAILURE.120.007121
  49. Sechi LA, 2021, CLIN RES CARDIOL, V110, P1063, DOI 10.1007/s00392-020-01800-z
  50. Shi Z, 2014, AUTON NEUROSCI-BASIC, V186, P54, DOI 10.1016/j.autneu.2014.10.001
  51. Singh I, 2022, CHEST, V161, P54, DOI 10.1016/j.chest.2021.08.010
  52. Skjorten I, 2021, EUR RESPIR J, V58, DOI 10.1183/13993003.00996-2021
  53. Sonnweber T, 2021, EUR RESPIR J, V57, DOI 10.1183/13993003.03481-2020
  54. Stein JH, 2008, J AM SOC ECHOCARDIOG, V21, P93, DOI 10.1016/j.echo.2007.11.011
  55. Stein JH, 2008, J AM SOC ECHOCARDIOG, P189, DOI [10.1016/j.echo.2007.11.011, DOI 10.1016/J.ECHO.2007.11.011]
  56. Stute NL, 2021, J PHYSIOL-LONDON, V599, P4269, DOI 10.1113/JP281888
  57. Sverrisdottir YB, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009257
  58. Szeghy RE, 2022, EXP PHYSIOL, V107, P694, DOI 10.1113/EP089481
  59. Thijssen DHJ, 2011, AM J PHYSIOL-HEART C, V300, pH2, DOI 10.1152/ajpheart.00471.2010
  60. Varga Z, 2020, LANCET, V395, P1417, DOI 10.1016/S0140-6736(20)30937-5
  61. Vlachopoulos C, 2010, J AM COLL CARDIOL, V55, P1318, DOI 10.1016/j.jacc.2009.10.061
  62. Whelton PK, 2018, HYPERTENSION, V71, pE13, DOI [10.1161/HYP.0000000000000065, 10.1161/HYP.0000000000000066]
  63. White DW, 2015, AUTON NEUROSCI-BASIC, V193, P12, DOI 10.1016/j.autneu.2015.08.004
  64. Willems LH, 2022, THROMB RES, V209, P106, DOI 10.1016/j.thromres.2021.11.027
  65. Xie Y, 2022, NAT MED, V28, P583, DOI 10.1038/s41591-022-01689-3
  66. Yuyun MF, 2018, MICROVASC RES, V119, P7, DOI 10.1016/j.mvr.2018.03.012
  67. Zoppini G, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0209794