DEEP LEARNING BASED UV FACIAL IMAGING GENERATION

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
conferenceObject
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
IEEE
Autores
MARGALEF, Pablo Toledo
NAVARRO, Pablo
HUNEMEIER, Tabita
GONZALEZ-JOSE, Rolando
DELRIEUX, Claudio
Citação
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Skin health has become a topic of interest in the recent years. To ensure a better diagnosis and treatment, the analysis of high-quality skin databases is crucial. In this regard, UV imaging is a valuable tool in detecting melanoma and other skin conditions. However, UV images present some challenges both in availability and processing. For this reason, in this work we present UVnet, a method to generate opticalto-UV facial images based on autoencoder architectures. The proposed UVnet is validated across an extension of the Baependi Heart Study and other state of the art method [1]. Our proposal successfully generates pseudo-UV samples with an average RMSE of 0.0040 and a structural similarity index against the actual samples of 0.2984. These results show that UVnet consistently achieves higher sample quality than existing methods and provides new capabilities regarding generation of large areas of the facial epidermis. This can be regarded as an initial effort to provide affordable access to high-quality skin databases.
Palavras-chave
Machine Learning, Unet, UV imaging, facial skin
Referências
  1. Cassidy B, 2022, MED IMAGE ANAL, V75, DOI 10.1016/j.media.2021.102305
  2. Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  3. Egan KJ, 2016, BMJ OPEN, V6, DOI 10.1136/bmjopen-2016-011598
  4. Gatys LA, 2016, PROC CVPR IEEE, P2414, DOI 10.1109/CVPR.2016.265
  5. Halicek M, 2021, PRO BIOMED OPT IMAG, V11320, DOI 10.1117/12.2549994
  6. He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
  7. Hensel M, 2017, ADV NEUR IN, V30
  8. Iakubovskii Pavel, 2019, SEGMENTATION MODELS
  9. Khrulkov Valentin, 2018, INT C MACHINE LEARNI, V80, P2621
  10. Kojima K, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-020-79995-4
  11. Matsuo R, 2022, PROC SPIE, V12177, DOI 10.1117/12.2624589
  12. Mojeski JA, 2020, PHOTODIAGN PHOTODYN, V30, DOI 10.1016/j.pdpdt.2020.101743
  13. Mosam A, 2004, J Dermatolog Treat, V15, P353, DOI 10.1080/09546630410023584
  14. Paszke Adam, 2019, NEURIPS
  15. Prasad Sonya, 2021, INT J WOMENS DERMATO
  16. Prechelt L, 1998, LECT NOTES COMPUT SC, V1524, P55
  17. Rahman I, 2009, TWIN RES HUM GENET, V12, P286, DOI 10.1375/twin.12.3.286
  18. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
  19. Seth D, 2017, CURR DERMATOL REP, V6, P204, DOI 10.1007/s13671-017-0192-7
  20. Siddique N, 2021, IEEE ACCESS, V9, P82031, DOI 10.1109/ACCESS.2021.3086020
  21. Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
  22. Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831
  23. Visconti A, 2021, BRIT J DERMATOL, V184, P880, DOI 10.1111/bjd.19807
  24. von Schantz M, 2015, SCI REP-UK, V5, DOI [10.1038/srep09214, 10.1016/j.sleep.2015.02.105]
  25. Wang Z, 2004, IEEE T IMAGE PROCESS, V13, P600, DOI 10.1109/TIP.2003.819861
  26. Zhang R, 2018, PROC CVPR IEEE, P586, DOI 10.1109/CVPR.2018.00068