Metabolic and Structural Signatures of Speech and Language Impairment in Corticobasal Syndrome: A Multimodal PET/MRI Study

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN NEUROLOGY, v.12, article ID 702052, 12p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Corticobasal syndrome (CBS) is a progressive neurological disorder related to multiple underlying pathologies, including four-repeat tauopathies, such as corticobasal degeneration and progressive supranuclear palsy, and Alzheimer's disease (AD). Speech and language are commonly impaired, encompassing a broad spectrum of deficits. We aimed to investigate CBS speech and language impairment patterns in light of a multimodal imaging approach.</p> Materials and Methods: Thirty-one patients with probable CBS were prospectively evaluated concerning their speech-language, cognitive, and motor profiles. They underwent positron emission tomography with [F-18]fluorodeoxyglucose (FDG-PET) and [C-11]Pittsburgh Compound-B (PIB-PET) on a hybrid PET-MRI machine to assess their amyloid status. PIB-PET images were classified based on visual and semi-quantitative analyses. Quantitative group analyses were performed on FDG-PET data, and atrophy patterns on MRI were investigated using voxel-based morphometry (VBM). Thirty healthy participants were recruited as imaging controls.</p> Results: Aphasia was the second most prominent cognitive impairment, presented in 67.7% of the cases, following apraxia (96.8%). We identified a wide linguistic profile, ranging from nonfluent variant-primary progressive aphasia to lexical-semantic deficits, mostly with impaired verbal fluency. PIB-PET was classified as negative (CBS-A- group) in 18/31 (58%) and positive (CBS-A+ group) in 13/31 (42%) patients. The frequency of dysarthria was significantly higher in the CBS-A- group than in the CBS-A+ group (55.6 vs. 7.7%, p = 0.008). CBS patients with dysarthria had a left-sided hypometabolism at frontal regions, with a major cluster at the left inferior frontal gyrus and premotor cortex. They showed brain atrophy mainly at the opercular frontal gyrus and putamen. There was a positive correlation between [F-18]FDG uptake and semantic verbal fluency at the left inferior (p = 0.006, R-2 = 0.2326), middle (0.0054, R-2 = 0.2376), and superior temporal gyri (p = 0.0066, R-2 = 0.2276). Relative to the phonemic verbal fluency, we found a positive correlation at the left frontal opercular gyrus (p = 0.0003, R-2 = 0.3685), the inferior (p = 0.0004, R-2 = 0.3537), and the middle temporal gyri (p = 0.0001, R-2 = 0.3993).</p> Discussion: In the spectrum of language impairment profile, dysarthria might be helpful to distinguish CBS patients not related to AD. Metabolic and structural signatures depicted from this feature provide further insights into the motor speech production network and are also helpful to differentiate CBS variants.</p>
Palavras-chave
corticobasal syndrome, frontotemporal lobar degeneration, nonfluent primary progressive aphasia, positron emission tomography, amyloid-PET, fluorodeoxyglucose F18, corticobasal degeneration
Referências
  1. Armstrong MJ, 2013, NEUROLOGY, V80, P496, DOI 10.1212/WNL.0b013e31827f0fd1
  2. Benvenutto A, 2020, J ALZHEIMERS DIS, V74, P331, DOI 10.3233/JAD-190961
  3. Boeve BF, 2003, ANN NEUROL, V54, pS15, DOI 10.1002/ana.10570
  4. Brucki SMD, 2004, BRAZ J MED BIOL RES, V37, P1771, DOI 10.1590/S0100-879X2004001200002
  5. Brucki SMD, 2003, ARQ NEURO-PSIQUIAT, V61, P777, DOI 10.1590/S0004-282X2003000500014
  6. Burrell JR, 2014, MOVEMENT DISORD, V29, P684, DOI 10.1002/mds.25872
  7. Burrell JR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061025
  8. Cassidy Adam, 2016, Pract Neurol, V16, P317, DOI 10.1136/practneurol-2015-001354
  9. Cesar KG, 2017, INT PSYCHOGERIATR, V29, P1345, DOI 10.1017/S1041610217000734
  10. Chand P, 2006, MOVEMENT DISORD, V21, P2018, DOI 10.1002/mds.21055
  11. Clark HM., 2020, AM J SPEECH-LANG PAT, V29, P498, DOI [10.1044/2019_AJSLP-CAC48-18-0217, DOI 10.1044/2019_AJSLP-CAC48-18-0217]
  12. Coutinho AM, 2020, EUR J NUCL MED MOL I, V47, P2666, DOI 10.1007/s00259-020-04714-0
  13. Almeida Isabel Junqueira de, 2021, Dement. neuropsychol., V15, P16, DOI 10.1590/1980-57642021dn15-010002
  14. de Carvalho IAM, 2008, ALZ DIS ASSOC DIS, V22, P375, DOI 10.1097/WAD.0b013e31818809b2
  15. de Oliveira LM, 2017, ARQ NEURO-PSIQUIAT, V75, P570, DOI [10.1590/0004-282x20170077, 10.1590/0004-282X20170077]
  16. Della Rosa PA, 2014, NEUROINFORMATICS, V12, P575, DOI 10.1007/s12021-014-9235-4
  17. Di Stefano F, 2016, ALZHEIMERS DEMENT, V12, P786, DOI 10.1016/j.jalz.2016.02.005
  18. Dickson DW, 2002, J NEUROPATH EXP NEUR, V61, P935, DOI 10.1093/jnen/61.11.935
  19. Dodich A, 2019, NEUROIMAGE-CLIN, V24, DOI 10.1016/j.nicl.2019.102009
  20. Faria D de P., 2019, REV BRAS PSIQUIATR, V41, P101, DOI [10.1590/1516-4446-2017-0002, DOI 10.1590/1516-4446-2017-0002]
  21. Goetz CG, 2004, MOVEMENT DISORD, V19, P1020, DOI 10.1002/mds.20213
  22. Gorno-Tempini ML, 2011, NEUROLOGY, V76, P1006, DOI 10.1212/WNL.0b013e31821103e6
  23. Grogan A, 2009, CEREB CORTEX, V19, P2690, DOI 10.1093/cercor/bhp023
  24. Hoglinger GU, 2017, MOVEMENT DISORD, V32, P853, DOI 10.1002/mds.26987
  25. Hu WT, 2009, MOVEMENT DISORD, V24, P1375, DOI 10.1002/mds.22574
  26. HUGHES CP, 1982, BRIT J PSYCHIAT, V140, P566, DOI 10.1192/bjp.140.6.566
  27. Josephs KA, 2012, BRAIN, V135, P1522, DOI 10.1093/brain/aws032
  28. Josephs KA, 2008, CURR OPIN NEUROL, V21, P688, DOI 10.1097/WCO.0b013e3283168ddd
  29. Josephs KA, 2006, BRAIN, V129, P1385, DOI 10.1093/brain/awl078
  30. Kasanuki K, 2018, NEUROLOGY, V91, pE268, DOI 10.1212/WNL.0000000000005828
  31. Kertesz A, 2000, NEUROLOGY, V55, P1368, DOI 10.1212/WNL.55.9.1368
  32. Kleiner-Fisman G, 2004, MOVEMENT DISORD, V19, P948, DOI 10.1002/mds.20140
  33. Koga S, 2019, PARKINSONISM RELAT D, V68, P79, DOI 10.1016/j.parkreldis.2019.09.001
  34. Lee SE, 2011, ANN NEUROL, V70, P327, DOI 10.1002/ana.22424
  35. Ling HL, 2010, BRAIN, V133, P2045, DOI 10.1093/brain/awq123
  36. Machado Thais Helena, 2009, Dement. neuropsychol., V3, P55, DOI 10.1590/S1980-57642009DN30100011
  37. Mathew R, 2012, J NEUROL NEUROSUR PS, V83, P405, DOI 10.1136/jnnp-2011-300875
  38. Mathew R, 2011, DEMENT GERIATR COGN, V31, P254, DOI 10.1159/000327169
  39. Parmera JB, 2021, MOVEMENT DISORD, V36, P651, DOI 10.1002/mds.28373
  40. Parmera Jacy Bezerra, 2016, Dement. neuropsychol., V10, P267, DOI 10.1590/s1980-5764-2016dn1004003
  41. Peterson KA, 2021, J NEUROL, V268, P796, DOI 10.1007/s00415-019-09463-1
  42. PFEFFER RI, 1982, J GERONTOL, V37, P323, DOI 10.1093/geronj/37.3.323
  43. REBEIZ JJ, 1968, ARCH NEUROL-CHICAGO, V18, P20, DOI 10.1001/archneur.1968.00470310034003
  44. Rittman T, 2013, J NEUROL NEUROSUR PS, V84, P544, DOI 10.1136/jnnp-2012-303618
  45. Sakae N, 2019, ALZHEIMERS DEMENT, V15, P1218, DOI 10.1016/j.jalz.2019.04.011
  46. Santos-Santos MA, 2016, JAMA NEUROL, V73, P733, DOI 10.1001/jamaneurol.2016.0412
  47. Seckin ZI, 2020, PARKINSONISM RELAT D, V81, P34, DOI 10.1016/j.parkreldis.2020.09.039
  48. Shelley BP, 2009, MOVEMENT DISORD, V24, P1593, DOI 10.1002/mds.22558
  49. STEELE JC, 1964, ARCH NEUROL-CHICAGO, V10, P333, DOI 10.1001/archneur.1964.00460160003001
  50. Wilson SM, 2010, BRAIN, V133, P2069, DOI 10.1093/brain/awq129
  51. Yamane T, 2017, EUR J NUCL MED MOL I, V44, P850, DOI 10.1007/s00259-016-3591-2
  52. Yassuda Mônica Sanches, 2017, Dement. neuropsychol., V11, P48, DOI 10.1590/1980-57642016dn11-010008