Impact of low-salt diet

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Citação
De Siqueira, F. R.; De Oliveira, K. C.; Heimann, J. C.; Furukawa, L. N. S.. Impact of low-salt diet. In: . HANDBOOK OF FAMINE, STARVATION, AND NUTRIENT DEPRIVATION: FROM BIOLOGY TO POLICY: SPRINGER INTERNATIONAL PUBLISHING, 2019. p.2011-2026.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Studies in experimental animals and in groups of humans and epidemiological studies have shown that the sodium chloride or salt (sodium, Na, NaCl) plays an important role mainly in the regulation of blood pressure and represents an important environmental factor involved in the genesis of cardiovascular diseases. Therefore, salt intake in the population has been a constant concern. Variable blood pressure responses to different content in sodium intake are found in experimental hypertension models and in humans, and the reasons for such heterogeneity are not fully elucidated. The reduction of dietary sodium intake is recommended by public health as one of the non-medicated treatments for hypertension and consequently reducing the risk of cardiovascular diseases. However, some studies have demonstrated side effects of salt dietary restriction, reporting changes in glucose metabolism (hyperinsulinemia and insulin resistance), and these alterations are gender and time specific in experimental and population studies. © Springer Nature Switzerland AG 2019.
Palavras-chave
Atherosclerosis, Blood pressure, Cardiovascular disease, Chronic kidney disease, Coronary heart disease, Gestation, Hypertension, Insulin resistance, Low-salt diet, Salt, Sodium
Referências
  1. Aburto, N.J., Ziolkovska, A., Hooper, L., Effect of lower sodium intake on health: systematic review and meta-analyses (2013) BMJ, 346, p. f1326
  2. Aguirre, V., Werner, E.D., Giraud, J., Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action (2002) J Biol Chem, 277 (2), pp. 1531-1537
  3. Alderman, M.H., Sealey, J.E., Cohen, H., Urinary sodium excretion and myocardial infarction in hypertensive patients: a prospective cohort study (1997) Am J Clin Nutr, 65, pp. 665-682
  4. Alves-Rodrigues, E.N., Veras, M.M., Rosa, K.T., Salt intake during pregnancy alters offspring's myocardial structure (2013) Nutr Metab Cardiovasc Dis, 23 (5), pp. 481-486
  5. Battista, M.C., Oligny, L.L., St-Louis, J., Intrauterine growth restriction in rats is associated with hypertension and renal dysfunction in adulthood (2002) Am J Physiol Endocrinol Metab, 283 (1), pp. E124-E131
  6. Bibbins-Domingo, K., Chertow, G.M., Coxson, P.G., Projected effect of dietary salt reductions on future cardiovascular disease (2010) N Engl J Med, 362 (7), pp. 590-599
  7. Borst, M.H., Navis, G., Sodium intake, RAAS-blockade and progressive renal disease (2016) Pharmacol Res, 107, pp. 344-351
  8. Catanozi, S., Rocha, J.C., Nakandakare, E.R., The rise of the plasma lipid concentration elicited by dietary sodium chloride restriction in Wistar rats is due to an impairment of the plasma triacylglycerol removal rate (2001) Atherosclerosis, 158 (1), pp. 81-86
  9. Catanozi, S., Rocha, J.C., Passarelli, M., Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice (2003) J Lipid Res, 44 (4), pp. 727-732
  10. Coelho, M.S., Passadore, M.D., Gasparetti, A.L., High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats (2006) Nutr Metab Cardiovasc Dis, 16 (2), pp. 148-155
  11. Cook, N.R., Appel, L.J., Whelton, P.K., Lower levels of sodium intake and reduced cardiovascular risk (2014) Circulation, 129 (9), pp. 981-989
  12. Ekinci, E.I., Thomas, G., Thomas, D., Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake (2009) Diabetes Care, 32, pp. 1398-1403
  13. Fusco, F.B., Gomes, D.J., Bispo, K.C.S., Low-sodium diet induces atherogenesis regardless of lowering blood pressure in hypertensive hyperlipidemic mice (2017) PLoS One, 12 (5), p. e0177086. , https://doi.org/10.1371/journal.pone.0177086
  14. Garg, R., Williams, G.H., Hurwitz, S., Low-salt diet increases insulin resistance in healthy subjects (2011) Metabolism, 60 (7), pp. 965-968. , https://doi.org/10.1016/j.metabol.2010.09.005
  15. Graudal, N.A., Hubeck-Graudal, T., Jürgens, G., Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (cochrane review) (2012) Am J Hypertens, 25 (1), pp. 1-15
  16. He, F.J., MacGregor, G.A., Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health (2002) J Hum Hypertens, 16, pp. 761-770
  17. He, F.J., MacGregor, G.A., How far should salt intake be reduced? (2003) Hypertension, 42, pp. 1093-1099
  18. He, F.J., MacGregor, G.A., A comprehensive review on salt and health and current experience of worldwide salt reduction programmes (2009) J Hum Hypertens, 23, pp. 363-384
  19. Hocherl, K., Kammerl, M.C., Schumacher, K., Role of prostanoids in regulation of the reninangiotensin aldosterone system by salt intake (2002) Am J Physiol Ren Physiol, 283, pp. F294-F301
  20. Ingert, C., Grima, M., Coquard, C., Effects of dietary salt changes on renal renin-angiotensin system in rats (2002) Am J Physiol Ren Physiol, 283 (5), pp. F995-1002
  21. Johnson, R.J., Herrera-Acosta, J., Schreiner, G.F., Subtle acquired renal injury as a mechanism of salt-sensitive hypertension (2002) N Engl J Med, 346 (12), pp. 913-923
  22. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease (2007) Am J Kidney Dis, 49, pp. S12-S154
  23. Kittikulsuth, W., Pollock, J.S., Pollock, D.M., Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II (2012) Am J Physiol Ren Physiol, 303 (5), pp. F659-F666
  24. Kwakernaak, A.J., Krikken, J.A., Binnenmars, S.H., Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial (2014) Lancet Diabetes Endocrinol, 2, pp. 385-395
  25. Leandro, S.M., Furukawa, L.N., Shimizu, M.H., Low birth weight in response to salt restriction during pregnancy is not due to alterations in uterine-placental blood flow or the placental and peripheral renin-angiotensin system (2008) Physiol Behav, 95 (1-2), pp. 145-151
  26. Lopes, K.L., Furukawa, L.N., De Oliveira, I.B., Perinatal salt restriction: a new pathway to programming adiposity indices in adult female Wistar rats (2008) Life Sci, 82 (13-14), pp. 728-732
  27. Mills, K.T., Chen, J., Yang, W., Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease (2016) JAMA, 315, pp. 2200-2210
  28. Moher, D., Cook, D.J., Eastwood, S., Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Quality of reporting of meta-analyses (1999) Lancet, 354, pp. 1896-1900
  29. Mozaffarian, D., Fahimi, S., Singh, G.M., Global sodium consumption and death from cardiovascular causes (2014) N Engl J Med, 371, pp. 624-634
  30. Okamoto, M.M., Sumida, D.H., Carvalho, C.R., Changes in dietary sodium consumption modulate GLUT4 gene expression and early steps of insulin signaling (2004) Am J Phys Regul Integr Comp Phys, 286, pp. R779-R785
  31. Prada, P., Okamoto, M.M., Furukawa, L.N., High- or low-salt diet from weaning to adulthood: effect on insulin sensitivity in Wistar rats (2000) Hypertension, 35 (1 Pt 2), pp. 424-429
  32. Prada, P.O., Coelho, M.S., Zecchin, H.G., Low salt intake modulates insulin signaling, JNK activity and IRS-1ser307 phosphorylation in rat tissues (2005) J Endocrinol, 185 (3), pp. 429-437
  33. Ruivo, G.F., Leandro, S.M., Do Nascimento, C.A., Insulin resistance due to chronic salt restriction is corrected by alpha and beta blockade and by L-arginine (2006) Physiol Behav, 88 (4-5), pp. 364-370
  34. Seravalli, P., De Oliveira, I.B., Zago, B.C., High and low salt intake during pregnancy: impact on cardiac and renal structure in newborns (2016) PLoS One, 11 (8), p. e0161598
  35. Sivritas, S.H., Ploth, D.W., Fitzgibbon, W.R., Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet (2008) Am J Physiol Ren Physiol, 295, pp. F811-F817
  36. Slagman, M.C., Waanders, F., Hemmelder, M.H., Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial (2011) BMJ, 343, p. d4366
  37. Susic, D., Frohlich, E.D., Salt consumption and cardiovascular, renal, and hypertensive diseases: clinical and mechanistic aspects (2012) Curr Opin Lipidol, 23, pp. 11-16
  38. Vidonho, A.F., Jr., Da Silva, A.A., Catanozi, S., Perinatal salt restriction: a new pathway to programming insulin resistance and dyslipidemia in adult wistar rats (2004) Pediatr Res, 56 (6), pp. 842-848
  39. Vogt, L., Waanders, F., Boomsma, F., Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan (2008) J Am Soc Nephrol, 19, pp. 999-1007
  40. (2007) Reducing salt intake in populations: report of a WHO forum and technical meeting., pp. 1-60. , WHO, Paris
  41. Xavier, A.R., Garófalo, M.A., Migliorini, R.H., Kettelhut, I.C., Dietary sodium restriction exacerbates age-related changes in rat adipose tissue and liver lipogenesis (2003) Metabolism, 52, pp. 1072-1077