Detecting Vascular Bifurcation in IVOCT Images Using Convolutional Neural Networks With Transfer Learning

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Autores
MIYAGAWA, Makoto
COSTA, Marly Guimaraes Fernandes
COSTA, Joao Pedro Guimaraes Fernandes
COSTA FILHO, Cicero Ferreira Fernandes
Citação
IEEE ACCESS, v.7, p.66167-66175, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Optical coherence tomography (OCT) technology enables experts to analyze coronary lesions from high-resolution intravascular images. Studies have shown a relationship between vascular bifurcation and a higher occurrence of wall thickening and lesions in these areas. Some level of automation could benefit experts since the visual analysis of pullback frames is a laborious and time-consuming task. Although convolutional neural networks (CNNs) have shown promising results in classifying medical images, in this paper, we found no studies using CNNs in IVOCT images to classify the vascular bifurcation. In this paper, we evaluated four different CNN architectures in the bifurcation classification task trained with the IVOCT images from nine pullbacks from nine different patients. We used data augmentation to balance the dataset, due to the small number of bifurcation-labeled frames, and also applied transfer learning methods to incorporate the knowledge from a lumen segmentation task into some of the evaluated networks. Our classification outperforms other works in this literature, presenting AUC = 99.72%, obtained by a CNN with transferred knowledge.
Palavras-chave
Cardiovascular diseases, intravascular optical coherence tomography, bifurcation detection, convolutional neural networks
Referências
  1. Alberti M, 2012, IEEE T BIO-MED ENG, V59, P1022, DOI 10.1109/TBME.2011.2181372
  2. Balocco S, 2018, LECT NOTES COMPUT SC, V11047, P34, DOI 10.1007/978-3-030-01132-1_4
  3. Cao YH, 2017, COMPUT MATH METHOD M, DOI 10.1155/2017/4710305
  4. Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI 10.1007/BF01386390
  5. Esteva A, 2017, NATURE, V542, P115, DOI 10.1038/nature21056
  6. Fujii K, 2015, JACC-CARDIOVASC IMAG, V8, P451, DOI 10.1016/j.jcmg.2014.10.015
  7. Gessert N, 2019, IEEE T MED IMAGING, V38, P426, DOI 10.1109/TMI.2018.2865659
  8. Girish GN, 2019, IEEE J BIOMED HEALTH, V23, P296, DOI 10.1109/JBHI.2018.2810379
  9. Gulshan V, 2016, JAMA-J AM MED ASSOC, V316, P2402, DOI 10.1001/jama.2016.17216
  10. HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747
  11. He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90
  12. Kim HM, 2014, IEEE ENG MED BIO, P178, DOI 10.1109/EMBC.2014.6943558
  13. Macedo MMG, 2015, COMPUT MED IMAG GRAP, V46, P237, DOI 10.1016/j.compmedimag.2015.09.004
  14. Mendis S, 2011, GLOBAL ATLAS CARDIOV
  15. Miyagawa M, 2018, Conf Proc IEEE Eng Med Biol Soc, V2018, P600, DOI 10.1109/EMBC.2018.8512299
  16. Morbiducci U, 2016, THROMB HAEMOSTASIS, V115, P484, DOI 10.1160/TH15-07-0597
  17. Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191
  18. Papadogiorgaki M, 2008, ULTRASOUND MED BIOL, V34, P1482, DOI 10.1016/j.ultrasmedbio.2008.01.022
  19. Porto C. D. N., 2017, INT SOC OPT PHOTON, V3
  20. Rathod Krishnaraj S, 2015, Interv Cardiol, V10, P8, DOI 10.15420/icr.2015.10.1.8
  21. Roleder T, 2015, POSTEP KARDIOL INTER, V11, P74, DOI 10.5114/pwki.2015.52278
  22. Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28
  23. Shin HC, 2016, IEEE T MED IMAGING, V35, P1285, DOI 10.1109/TMI.2016.2528162
  24. SIMONYAN K, 2014, 14091556 ARXIV, V1409, DOI 10.1016/J.INFSOF.2008.09.005
  25. Spanos K, 2017, ANGIOLOGY, V68, P757, DOI 10.1177/0003319716678741
  26. Srivastava N, 2014, J MACH LEARN RES, V15, P1929
  27. Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594
  28. Tajbakhsh N, 2016, IEEE T MED IMAGING, V35, P1299, DOI 10.1109/TMI.2016.2535302
  29. Ughi GJ, 2012, BIOMED OPT EXPRESS, V3
  30. Wang AC, 2014, BIOMED OPT EXPRESS, V5, P3160, DOI 10.1364/BOE.5.003160
  31. WHO, 2016, HEARTS TECHN PACK CA
  32. Xu MD, 2017, P ANN INT IEEE EMBS, P1501, DOI 10.1109/EMBC.2017.8037120
  33. Yong YL, 2017, J BIOMED OPT, V22, DOI 10.1117/1.JBO.22.12.126005
  34. ZARINS CK, 1983, CIRC RES, V53, P502, DOI 10.1161/01.RES.53.4.502