Overhauling CAR T Cells to Improve Efficacy, Safety and Cost

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
CHICAYBAM, Leonardo
BONAMINO, Martin H.
INVITTI, Adriana Luckow
ROZENCHAN, Patricia Bortman
Citação
CANCERS, v.12, n.9, article ID 2360, 26p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990's, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.
Palavras-chave
gene therapy, chimeric antigen receptor, T cell, NK cell, cancer, immunotherapy
Referências
  1. Abdo LD, 2020, ONCOIMMUNOLOGY, V9, DOI 10.1080/2162402X.2020.1752592
  2. Aghajanian H, 2019, NATURE, V573, P430, DOI 10.1038/s41586-019-1546-z
  3. Ajina A, 2019, PROG MOL BIOL TRANSL, V164, P217, DOI 10.1016/bs.pmbts.2019.06.015
  4. Ajina A, 2018, MOL CANCER THER, V17, P1795, DOI 10.1158/1535-7163.MCT-17-1097
  5. Aldoss I, 2017, LEUKEMIA, V31, P777, DOI 10.1038/leu.2016.391
  6. Altvater B, 2009, CLIN CANCER RES, V15, P4857, DOI 10.1158/1078-0432.CCR-08-2810
  7. Anurathapan U, 2014, MOL THER, V22, P623, DOI 10.1038/mt.2013.262
  8. Ashiru O, 2010, CANCER RES, V70, P481, DOI 10.1158/0008-5472.CAN-09-1688
  9. Beatty GL, 2018, GASTROENTEROLOGY, V155, P29, DOI 10.1053/j.gastro.2018.03.029
  10. Benson DM, 2010, BLOOD, V116, P2286, DOI 10.1182/blood-2010-02-271874
  11. Berger R, 2008, CLIN CANCER RES, V14, P3044, DOI 10.1158/1078-0432.CCR-07-4079
  12. Blake Z, 2018, J IMMUNOTHER CANCER, V6, DOI 10.1186/s40425-018-0338-6
  13. Bommareddy PK, 2017, AM J CLIN DERMATOL, V18, P1, DOI 10.1007/s40257-016-0238-9
  14. Boyiadzis MM, 2018, J IMMUNOTHER CANCER, V6, DOI 10.1186/s40425-018-0460-5
  15. Brahmer JR, 2012, NEW ENGL J MED, V366, P2455, DOI 10.1056/NEJMoa1200694
  16. Cao Y, 2016, ANGEW CHEM INT EDIT, V55, P7520, DOI 10.1002/anie.201601902
  17. Casucci M, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.00507
  18. Chang YH, 2013, CANCER RES, V73, P1777, DOI 10.1158/0008-5472.CAN-12-3558
  19. Chen KH, 2016, ONCOTARGET, V7, P56219, DOI 10.18632/oncotarget.11019
  20. Chen XL, 2016, ONCOTARGET, V7, P27764, DOI 10.18632/oncotarget.8526
  21. Chicaybam L, 2020, GENE THER, V27, P85, DOI 10.1038/s41434-020-0121-4
  22. Chicaybam Leonardo, 2020, Methods Mol Biol, V2086, P131, DOI 10.1007/978-1-0716-0146-4_9
  23. Chicaybam L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060298
  24. Chmielewski M, 2013, FRONT IMMUNOL, V4, DOI 10.3389/fimmu.2013.00371
  25. Choi BD, 2019, J IMMUNOTHER CANCER, V7, DOI 10.1186/s40425-019-0806-7
  26. Chu J, 2014, LEUKEMIA, V28, P917, DOI 10.1038/leu.2013.279
  27. Crossland DL, 2018, ONCOGENE, V37, P3686, DOI 10.1038/s41388-018-0187-2
  28. Cruz CRY, 2013, BLOOD, V122, P2965, DOI 10.1182/blood-2013-06-506741
  29. De Oliveira SN, 2013, HUM GENE THER, V24, P824, DOI 10.1089/hum.2012.202
  30. Denman CJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030264
  31. Ding LJ, 2018, MEDICINE, V97, DOI 10.1097/MD.0000000000009992
  32. Doubrovina E, 2012, BLOOD, V119, P2644, DOI 10.1182/blood-2011-08-371971
  33. Duong MT, 2019, MOL THER-ONCOLYTICS, V12, P124, DOI 10.1016/j.omto.2018.12.009
  34. Eyquem J, 2017, NATURE, V543, P113, DOI 10.1038/nature21405
  35. Facts & Figures, 2020, FACTS FIG
  36. Foster JB, 2019, HUM GENE THER, V30, P168, DOI 10.1089/hum.2018.145
  37. Fraietta JA, 2018, NATURE, V558, P307, DOI 10.1038/s41586-018-0178-z
  38. Frank AM, 2019, MOL THER-METH CLIN D, V12, P19, DOI 10.1016/j.omtm.2018.10.006
  39. Fransson M, 2012, J NEUROINFLAMM, V9, DOI 10.1186/1742-2094-9-112
  40. Fujisaki H, 2009, CANCER RES, V69, P4010, DOI 10.1158/0008-5472.CAN-08-3712
  41. Gargett T, 2014, FRONT PHARMACOL, V5, DOI 10.3389/fphar.2014.00235
  42. Garreta Elena, 2018, Curr Transplant Rep, V5, P14, DOI 10.1007/s40472-018-0177-x
  43. Ghassemi S, 2018, CANCER IMMUNOL RES, V6, P1100, DOI 10.1158/2326-6066.CIR-17-0405
  44. Ghorashian S, 2019, NAT MED, V25, P1408, DOI 10.1038/s41591-019-0549-5
  45. Giavridis T, 2018, NAT MED, V24, P731, DOI 10.1038/s41591-018-0041-7
  46. Gilbert A, 2017, J CLIN ONCOL, V35, DOI 10.1200/JCO.2017.35.15_suppl.e14550
  47. Grada Z, 2013, MOL THER-NUCL ACIDS, V2, DOI 10.1038/mtna.2013.32
  48. Granzin M, 2015, CYTOTHERAPY, V17, P621, DOI 10.1016/j.jcyt.2015.03.611
  49. Groh V, 2002, NATURE, V419, P734, DOI 10.1038/nature01112
  50. Grosser R, 2019, CANCER CELL, V36, P471, DOI 10.1016/j.ccell.2019.09.006
  51. Guedan S, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02460
  52. Guillerey C, 2016, NAT IMMUNOL, V17, P1025, DOI 10.1038/ni.3518
  53. Hackett PB, 2010, MOL THER, V18, P674, DOI 10.1038/mt.2010.2
  54. Hamada M, 2018, EBIOMEDICINE, V34, P18, DOI 10.1016/j.ebiom.2018.07.008
  55. Haque T, 2007, BLOOD, V110, P1123, DOI 10.1182/blood-2006-12-063008
  56. Harrer DC, 2018, HUM GENE THER, V29, P547, DOI 10.1089/hum.2017.236
  57. Hartmann J, 2017, EMBO MOL MED, V9, P1183, DOI 10.15252/emmm.201607485
  58. Hawkins R.E., 2014, CELLULAR THERAPY CAN
  59. Hay KA, 2017, BLOOD, V130, P2295, DOI 10.1182/blood-2017-06-793141
  60. He JC, 2018, CELL IMMUNOL, V329, P31, DOI 10.1016/j.cellimm.2018.04.007
  61. Hegde M, 2016, J CLIN INVEST, V126, P3036, DOI 10.1172/JCI83416
  62. Hill BT, 2020, BONE MARROW TRANSPL, V55, P1184, DOI 10.1038/s41409-019-0657-3
  63. Hombach A, 2000, GENE THER, V7, P1067, DOI 10.1038/sj.gt.3301195
  64. Hombach AA, 2019, MOL THER, V27, P1825, DOI 10.1016/j.ymthe.2019.06.007
  65. Huang X, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133152
  66. Huang ZL, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aay9209
  67. Hudecek M, 2015, CANCER IMMUNOL RES, V3, P125, DOI 10.1158/2326-6066.CIR-14-0127
  68. Imai C, 2005, BLOOD, V106, P376, DOI 10.1182/blood-2004-12-4797
  69. John LB, 2013, ONCOIMMUNOLOGY, V2, DOI 10.4161/onci.26286
  70. John LB, 2013, CLIN CANCER RES, V19, P5636, DOI 10.1158/1078-0432.CCR-13-0458
  71. Juillerat A, 2016, SCI REP-UK, V6, DOI 10.1038/srep18950
  72. June CH, 2018, SCIENCE, V359, P1361, DOI 10.1126/science.aar6711
  73. Kagoya Y, 2018, NAT MED, V24, P352, DOI 10.1038/nm.4478
  74. Kailayangiri S, 2017, ONCOIMMUNOLOGY, V6, DOI 10.1080/2162402X.2016.1250050
  75. Kasakovski D, 2018, J HEMATOL ONCOL, V11, DOI 10.1186/s13045-018-0629-x
  76. Kebriaei P, 2016, J CLIN INVEST, V126, P3363, DOI 10.1172/JCI86721
  77. Kennedy M, 2012, CELL REP, V2, P1722, DOI 10.1016/j.celrep.2012.11.003
  78. Kersten K, 2017, EMBO MOL MED, V9, P137, DOI 10.15252/emmm.201606857
  79. Kim MS, 2015, J AM CHEM SOC, V137, P2832, DOI 10.1021/jacs.5b00106
  80. Klichinsky M, 2020, NAT BIOTECHNOL, V38, P947, DOI 10.1038/s41587-020-0462-y
  81. Klingemann H, 2015, CYTOTHERAPY, V17, P245, DOI 10.1016/j.jcyt.2014.09.007
  82. Kolata G., NY TIMES
  83. Krishnamurthy J, 2015, CLIN CANCER RES, V21, P3241, DOI 10.1158/1078-0432.CCR-14-3197
  84. Kruschinski A, 2008, P NATL ACAD SCI USA, V105, P17481, DOI 10.1073/pnas.0804788105
  85. Kudo K, 2014, CANCER RES, V74, P93, DOI 10.1158/0008-5472.CAN-13-1365
  86. Kuhlmann AS, 2018, CURR OPIN HIV AIDS, V13, P446, DOI 10.1097/COH.0000000000000485
  87. Lacroix M, 2015, J BIOL CHEM, V290, P26943, DOI 10.1074/jbc.M115.682138
  88. Lanitis Evripidis, 2020, Curr Opin Biotechnol, V65, P75, DOI 10.1016/j.copbio.2020.01.009
  89. Lee DW, 2014, BLOOD, V124, P188, DOI 10.1182/blood-2014-05-552729
  90. Levine BL, 2017, MOL THER-METH CLIN D, V4, P92, DOI 10.1016/j.omtm.2016.12.006
  91. Li H, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-017-0238-6
  92. Li L, 2010, CANCER GENE THER, V17, P147, DOI 10.1038/cgt.2009.61
  93. Li Y, 2018, CELL STEM CELL, V23, P181, DOI 10.1016/j.stem.2018.06.002
  94. Li YM, 2020, BIOORG CHEM, V102, DOI 10.1016/j.bioorg.2020.104041
  95. Liu E, 2018, LEUKEMIA, V32, P520, DOI 10.1038/leu.2017.226
  96. Liu EL, 2020, NEW ENGL J MED, V382, P545, DOI 10.1056/NEJMoa1910607
  97. Liu XJ, 2016, CANCER RES, V76, P1578, DOI 10.1158/0008-5472.CAN-15-2524
  98. Ma JSY, 2016, P NATL ACAD SCI USA, V113, pE450, DOI 10.1073/pnas.1524193113
  99. Ma L, 2019, SCIENCE, V365, P162, DOI 10.1126/science.aav8692
  100. MacDonald KG, 2016, J CLIN INVEST, V126, P1413, DOI 10.1172/JCI82771
  101. Marten A, 2006, INT J CANCER, V119, P2359, DOI 10.1002/ijc.22186
  102. Maldini CR, 2018, NAT REV IMMUNOL, V18, P605, DOI 10.1038/s41577-018-0042-2
  103. Maude SL, 2018, NEW ENGL J MED, V378, P439, DOI 10.1056/NEJMoa1709866
  104. Melenhorst JJ, 2010, BLOOD, V116, P4700, DOI 10.1182/blood-2010-06-289991
  105. Mirzaei HR, 2016, CANCER LETT, V380, P413, DOI 10.1016/j.canlet.2016.07.001
  106. Mock U, 2016, CYTOTHERAPY, V18, P1002, DOI 10.1016/j.jcyt.2016.05.009
  107. Monjezi R, 2017, LEUKEMIA, V31, P186, DOI 10.1038/leu.2016.180
  108. Muller T, 2008, CANCER IMMUNOL IMMUN, V57, P411, DOI 10.1007/s00262-007-0383-3
  109. Nakazawa Y, 2016, J HEMATOL ONCOL, V9, DOI 10.1186/s13045-016-0256-3
  110. Neelapu SS, 2017, NEW ENGL J MED, V377, P2531, DOI 10.1056/NEJMoa1707447
  111. Nikzad R, 2019, SCI IMMUNOL, V4, DOI 10.1126/sciimmunol.aat8116
  112. Nishimura T, 2013, CELL STEM CELL, V12, P114, DOI 10.1016/j.stem.2012.11.002
  113. Norelli M, 2016, BBA-REV CANCER, V1865, P90, DOI 10.1016/j.bbcan.2015.12.001
  114. Norelli M, 2018, NAT MED, V24, P739, DOI 10.1038/s41591-018-0036-4
  115. O'Sullivan TE, 2015, IMMUNITY, V43, P634, DOI 10.1016/j.immuni.2015.09.013
  116. Olden BR, 2018, J CONTROL RELEASE, V282, P140, DOI 10.1016/j.jconrel.2018.02.043
  117. Panjwani MK, 2016, MOL THER, V24, P1602, DOI 10.1038/mt.2016.146
  118. Patel S, 2019, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.00196
  119. Perales MA, 2018, BIOL BLOOD MARROW TR, V24, P27, DOI 10.1016/j.bbmt.2017.10.017
  120. Porter D, 2018, J HEMATOL ONCOL, V11, DOI 10.1186/s13045-018-0571-y
  121. Prosser ME, 2012, MOL IMMUNOL, V51, P263, DOI 10.1016/j.molimm.2012.03.023
  122. Provasi E, 2012, NAT MED, V18, P807, DOI 10.1038/nm.2700
  123. Qasim W, 2017, SCI TRANSL MED, V9, DOI 10.1126/scitranslmed.aaj2013
  124. Qin DY, 2016, ANTI-CANCER DRUG, V27, P711, DOI 10.1097/CAD.0000000000000387
  125. Rafiq S, 2018, NAT BIOTECHNOL, V36, P847, DOI 10.1038/nbt.4195
  126. Raikar SS, 2018, ONCOIMMUNOLOGY, V7, DOI 10.1080/2162402X.2017.1407898
  127. Raj D, 2019, GUT, V68, P1052, DOI 10.1136/gutjnl-2018-316595
  128. Ramos CA, 2010, STEM CELLS, V28, P1107, DOI 10.1002/stem.433
  129. Ravianayake S, 2015, CYTOTHERAPY, V17, P1251, DOI 10.1016/j.jcyt.2015.05.013
  130. Ren JT, 2017, CLIN CANCER RES, V23, P2255, DOI 10.1158/1078-0432.CCR-16-1300
  131. Rodgers DT, 2016, P NATL ACAD SCI USA, V113, pE459, DOI 10.1073/pnas.1524155113
  132. Rongvaux A, 2014, NAT BIOTECHNOL, V32, P364, DOI 10.1038/nbt.2858
  133. Rosenberg SA, 2015, SCIENCE, V348, P62, DOI 10.1126/science.aaa4967
  134. Salih HR, 2002, J IMMUNOL, V169, P4098, DOI 10.4049/jimmunol.169.8.4098
  135. Schlenker R, 2017, CANCER RES, V77, P3577, DOI 10.1158/0008-5472.CAN-16-1922
  136. Schonfeld K, 2015, MOL THER, V23, P330, DOI [10.1038/mt.2014.21, 10.1038/mt.2014.219]
  137. Schuster SJ, 2017, NEW ENGL J MED, V377, P2545, DOI 10.1056/NEJMoa1708566
  138. Seidel D, 2015, CANCER IMMUNOL IMMUN, V64, P621, DOI 10.1007/s00262-015-1669-5
  139. Shah NN, 2019, BLOOD ADV, V3, P2317, DOI 10.1182/bloodadvances.2019000219
  140. Shimabukuro-Vornhagen A, 2018, J IMMUNOTHER CANCER, V6, DOI 10.1186/s40425-018-0343-9
  141. Shimasaki N, 2020, NAT REV DRUG DISCOV, DOI 10.1038/s41573-019-0052-1
  142. Shimasaki N, 2012, CYTOTHERAPY, V14, P830, DOI 10.3109/14653249.2012.671519
  143. Singh Nathan, 2014, Cancer Immunol Res, V2, P1059, DOI 10.1158/2326-6066.CIR-14-0051
  144. Slaney CY, 2018, CANCER DISCOV, V8, P924, DOI 10.1158/2159-8290.CD-18-0297
  145. Smith TT, 2017, NAT NANOTECHNOL, V12, P813, DOI [10.1038/nnano.2017.57, 10.1038/NNANO.2017.57]
  146. Spanholtz J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020740
  147. Stadtmauer EA, 2020, SCIENCE, V367, P1001, DOI 10.1126/science.aba7365
  148. Stadtmauer EA, 2019, BLOOD, V134, DOI 10.1182/blood-2019-122374
  149. Straathof KC, 2005, BLOOD, V105, P4247, DOI 10.1182/blood-2004-11-4564
  150. Takahashi K, 2007, CELL, V131, P861, DOI 10.1016/j.cell.2007.11.019
  151. Tamada K, 2012, CLIN CANCER RES, V18, P6436, DOI 10.1158/1078-0432.CCR-12-1449
  152. Tanaka T, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a016295
  153. Tanoue K, 2017, CANCER RES, V77, P2040, DOI 10.1158/0008-5472.CAN-16-1577
  154. Themeli M, 2013, NAT BIOTECHNOL, V31, P928, DOI 10.1038/nbt.2678
  155. Timmermans F, 2009, J IMMUNOL, V182, P6879, DOI 10.4049/jimmunol.0803670
  156. Topalian SL, 2012, NEW ENGL J MED, V366, P2443, DOI 10.1056/NEJMoa1200690
  157. Torikai H, 2013, BLOOD, V122, P1341, DOI 10.1182/blood-2013-03-478255
  158. Tsukahara T, 2015, GENE THER, V22, P209, DOI 10.1038/gt.2014.104
  159. Uciechowski P, 2020, ONCOLOGY-BASEL, V98, P131, DOI 10.1159/000505099
  160. Urbanska K, 2012, CANCER RES, V72, P1844, DOI 10.1158/0008-5472.CAN-11-3890
  161. van Loenen MM, 2013, GENE THER, V20, P861, DOI 10.1038/gt.2013.4
  162. Vargas JE, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-1047-x
  163. Veillette A, 2018, SCI IMMUNOL, V3, DOI 10.1126/sciimmunol.aav1872
  164. Vizcardo R, 2013, CELL STEM CELL, V12, P31, DOI 10.1016/j.stem.2012.12.006
  165. Wang XY, 2016, MOL THER-ONCOLYTICS, V3, DOI 10.1038/mto.2016.15
  166. Wang ZG, 2018, BIOMARK RES, V6, DOI 10.1186/s40364-018-0116-0
  167. Watanabe N, 2016, ONCOIMMUNOLOGY, V5, DOI 10.1080/2162402X.2016.1253656
  168. Wing A, 2018, CANCER IMMUNOL RES, V6, P605, DOI 10.1158/2326-6066.CIR-17-0314
  169. Woll PS, 2009, BLOOD, V113, P6094, DOI 10.1182/blood-2008-06-165225
  170. Wu CY, 2015, SCIENCE, V350, DOI 10.1126/science.aab4077
  171. Yong CSM, 2016, ONCOTARGET, V7, P34582, DOI 10.18632/oncotarget.9149
  172. Zanatta DB, 2014, MOL THER-METH CLIN D, V1, DOI 10.1038/mtm.2014.52
  173. Zhang C, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00533
  174. Zhang Q, 2018, J IMMUNOL RES, V2018, DOI 10.1155/2018/4263520
  175. Zhang Q, 2018, ONCOL REP, V40, P3714, DOI 10.3892/or.2018.6731
  176. Zhang QF, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02359
  177. Zhang XM, 2013, CANCER RES, V73, P4885, DOI 10.1158/0008-5472.CAN-12-4081
  178. Zhao BX, 2019, THERANOSTICS, V9, P1837, DOI 10.7150/thno.27051
  179. Zhao YB, 2010, CANCER RES, V70, P9053, DOI 10.1158/0008-5472.CAN-10-2880
  180. Zhou XO, 2015, BLOOD, V125, P4103, DOI 10.1182/blood-2015-02-628354