Rederivation of a mutant line (prop 1) of zebrafish Danio rerio infected with Pseudoloma neurophilia using in vitro fertilization with eggs from pathogen-free wild-type (AB) females and sperm from prop 1 males

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
SILVA, Caroline Caetano da
BISSEGATO, Debora
KENT, Michael L.
Citação
JOURNAL OF FISH DISEASES, v.45, n.1, p.35-39, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Along with the growing number of laboratories that work with zebrafish (Danio rerio), it is necessary to have animals with good sanitary quality. Specific pathogens can interfere with the experimental results and in the life quality of the animals. Pseudoloma neurophilia is a parasite with high potential for interference in behavioural, morphology, toxicological and genetic research, and is very common in zebrafish facilities. With that, we implemented a protocol for the pathogen elimination in a genetically modified lineage (prop 1) using eggs from specific pathogen-free (SPF) wild-type fish (AB line) for in vitro fertilization, along with water recirculation equipment disinfection, appropriate PCR screening and back crossing protocols. This resulted in SPF prop 1 heterozygotes, which allowed us to move forward with subsequent crossings to develop homozygote prop 1 mutants for our research. Hence, this demonstrates a useful strategy for an individual research laboratory to rederive a specific mutant free line that is not available from other SPF laboratories.
Palavras-chave
Danio rerio, pathogen, Pseudoloma neurophilia, SPF, zebrafish
Referências
  1. [Anonymous], 2013, ZEBTEC DISINFECTION, V1, P1
  2. Brown LL, 1997, DIS AQUAT ORGAN, V29, P213, DOI 10.3354/dao029213
  3. Carvalho L.R., 2019, SPERM ZEBRAFISH, V16, DOI 10.1089/ZEB.2018.1696
  4. Chinabut S, 1994, THIRD ASIAN FISHERIES FORUM, P339
  5. Correa FA, 2019, ARCH ENDOCRIN METAB, V63, P167, DOI 10.20945/2359-3997000000139
  6. Crim MJ, 2017, J AM ASSOC LAB ANIM, V56, P412
  7. Docker MF, 1997, DIS AQUAT ORGAN, V29, P41, DOI 10.3354/dao029041
  8. EVELYN TPT, 1984, J FISH DIS, V7, P173, DOI 10.1111/j.1365-2761.1984.tb00921.x
  9. Ferguson JA, 2007, DIS AQUAT ORGAN, V76, P205, DOI 10.3354/dao076205
  10. Funkhouser LJ, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001631
  11. Kent ML, 2020, J FISH DIS, V43, P637, DOI 10.1111/jfd.13165
  12. Kent ML, 2012, ILAR J, V53, P126, DOI 10.1093/ilar.53.2.126
  13. Lidster K, 2017, J FISH BIOL, V90, P1891, DOI 10.1111/jfb.13278
  14. Lo Madeira J, 2017, CLIN ENDOCRINOL, V87, P725, DOI 10.1111/cen.13430
  15. Matthews M, 2012, ILAR J, V53, P192, DOI 10.1093/ilar.53.2.192
  16. Midttun HLE, 2020, J FISH DIS, V43, P863, DOI 10.1111/jfd.13198
  17. Midttun HLE, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-64948-8
  18. MULCAHY D, 1985, J FISH DIS, V8, P393, DOI 10.1111/j.1365-2761.1985.tb00962.x
  19. Murray KN, 2016, ZEBRAFISH, V13, pS30, DOI 10.1089/zeb.2015.1206
  20. Murray KN, 2011, COMPARATIVE MED, V61, P322
  21. Norris LJ, 2018, ZEBRAFISH, V15, P188, DOI 10.1089/zeb.2017.1528
  22. Phelps NBD, 2008, J AQUAT ANIM HEALTH, V20, P45, DOI 10.1577/H07-029.1
  23. Pradeep PJ, 2017, AQUAC RES, V48, P2706, DOI 10.1111/are.13102
  24. Ramsay JM, 2009, DIS AQUAT ORGAN, V88, P69, DOI 10.3354/dao02145
  25. Sanders JL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076064
  26. Spagnoli S, 2015, BEHAV BRAIN RES, V291, P351, DOI 10.1016/j.bbr.2015.05.046
  27. Spagnoli ST, 2015, ZEBRAFISH, V12, P189, DOI 10.1089/zeb.2014.1055
  28. UK Home Office, 2015, STAT SCI PROC LIV AN
  29. Wu W, 1998, NAT GENET, V18, P147, DOI 10.1038/ng0298-147