Plasmablast Expansion Following the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in DENV-Naive and DENV-Exposed Individuals in a Brazilian Cohort

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MAGNANI, Diogo M.
RICCIARDI, Michael J.
TIMENETSKY, Maria do Carmo S. T.
GOULART, Raphaella
Citação
FRONTIERS IN IMMUNOLOGY, v.13, article ID 908398, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
An effective vaccine against the dengue virus (DENV) should induce a balanced, long-lasting antibody (Ab) response against all four viral serotypes. The burst of plasmablasts in the peripheral blood after vaccination may reflect enriched vaccine-specific Ab secreting cells. Here we characterize the acute plasmablast responses from naive and DENV-exposed individuals following immunization with the live attenuated tetravalent (LAT) Butantan DENV vaccine (Butantan-DV). The frequency of circulating plasmablasts was determined by flow cytometric analysis of fresh whole blood specimens collected from 40 participants enrolled in the Phase II Butantan-DV clinical trial (NCT01696422) before and after (days 6, 12, 15 and 22) vaccination. We observed a peak in the number of circulating plasmablast at day 15 after vaccination in both the DENV naive and the DENV-exposed vaccinees. DENV-exposed vaccinees experienced a significantly higher plasmablast expansion. In the DENV-naive vaccinees, plasmablasts persisted for approximately three weeks longer than among DENV-exposed volunteers. Our findings indicate that the Butantan-DV can induce plasmablast responses in both DENV-naive and DENV-exposed individuals and demonstrate the influence of pre-existing DENV immunity on Butantan DV-induced B-cell responses.
Palavras-chave
dengue, dengue infection, dengue vaccine, plasmablast, humoral response
Referências
  1. Amanna IJ, 2007, NEW ENGL J MED, V357, P1903, DOI 10.1056/NEJMoa066092
  2. [Anonymous], 2020, SAUDEGOVBRIMAGESPDF2
  3. [Anonymous], 2022, SECRETARIA VIGILANCI
  4. Balakrishnan T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029430
  5. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060
  6. Capeding RZ, 2011, VACCINE, V29, P3863, DOI 10.1016/j.vaccine.2011.03.057
  7. Carter MJ, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00630
  8. Chau Tran Nguyen Bich, 2008, J Infect Dis, V198, P516, DOI 10.1086/590117
  9. Desai S, 2021, SMALL BUS ECON, V56, P933, DOI 10.1007/s11187-019-00310-1
  10. Doria-Rose NA, 2009, J VIROL, V83, P188, DOI 10.1128/JVI.01583-08
  11. Durbin Anna P, 2016, J Infect Dis, V214, P832, DOI 10.1093/infdis/jiw067
  12. Durbin AP, 2011, J INFECT DIS, V203, P327, DOI 10.1093/infdis/jiq059
  13. Ellebedy AH, 2016, NAT IMMUNOL, V17, P1226, DOI 10.1038/ni.3533
  14. Fares RCG, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/321873
  15. Furman D, 2015, VACCINE, V33, P5271, DOI 10.1016/j.vaccine.2015.06.117
  16. Garcia M, 2017, IMMUNOLOGY, V151, P122, DOI 10.1111/imm.12713
  17. Garcia-Bates TM, 2013, J IMMUNOL, V190, P80, DOI 10.4049/jimmunol.1103350
  18. Green S, 2006, CURR OPIN INFECT DIS, V19, P429, DOI 10.1097/01.qco.0000244047.31135.fa
  19. Guzman MG, 2010, VIRUSES-BASEL, V2, P2649, DOI 10.3390/v2122649
  20. Halliley JL, 2010, VACCINE, V28, P3582, DOI 10.1016/j.vaccine.2010.02.088
  21. Halstead SB, 2010, LANCET INFECT DIS, V10, P712, DOI 10.1016/S1473-3099(10)70166-3
  22. Jahnmatz M, 2014, VACCINE, V32, P3350, DOI 10.1016/j.vaccine.2014.04.048
  23. Johnson BW, 2005, J CLIN MICROBIOL, V43, P4977, DOI 10.1128/JCM.43.10.4977-4983.2005
  24. Kallas EG, 2020, LANCET INFECT DIS, V20, P839, DOI 10.1016/S1473-3099(20)30023-2
  25. Katzelnick LC, 2017, VACCINE, V35, P4659, DOI 10.1016/j.vaccine.2017.07.045
  26. Katzelnick LC, 2016, P NATL ACAD SCI USA, V113, P728, DOI 10.1073/pnas.1522136113
  27. Kirkpatrick BD, 2015, J INFECT DIS, V212, P702, DOI 10.1093/infdis/jiv082
  28. Lee VJ, 2010, VACCINE, V28, P6852, DOI 10.1016/j.vaccine.2010.08.031
  29. Lei CS, 2021, J CLIN LAB ANAL, V35, DOI 10.1002/jcla.24035
  30. Magnani DM, 2017, J VIROL, V91, DOI 10.1128/JVI.00867-17
  31. Mathew A, 2011, J INFECT DIS, V204, P1514, DOI 10.1093/infdis/jir607
  32. McElroy AK, 2015, P NATL ACAD SCI USA, V112, P4719, DOI 10.1073/pnas.1502619112
  33. Murphy BR, 2011, ANNU REV IMMUNOL, V29, P587, DOI 10.1146/annurev-immunol-031210-101315
  34. Nakaya HI, 2011, NAT IMMUNOL, V12, P786, DOI 10.1038/ni.2067
  35. Nutt SL, 2015, NAT REV IMMUNOL, V15, P160, DOI 10.1038/nri3795
  36. Odendahl M, 2005, BLOOD, V105, P1614, DOI 10.1182/blood-2004-07-2507
  37. Priyamvada L, 2016, J VIROL, V90, P5574, DOI 10.1128/JVI.03203-15
  38. Radbruch A, 2006, NAT REV IMMUNOL, V6, P741, DOI 10.1038/nri1886
  39. Ricciardi MJ, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0006000
  40. Roehrig JT, 2008, VIRAL IMMUNOL, V21, P123, DOI 10.1089/vim.2008.0007
  41. Rothman AL, 2004, J CLIN INVEST, V113, P946, DOI 10.1172/JCI200421512
  42. Sandberg JT, 2021, J IMMUNOL, V207, P1033, DOI 10.4049/jimmunol.2001381
  43. Saude M da, SEMANAS EPIDEMIOLOGI, V1, P2021
  44. Sharma A, 2021, CELL, V184, P6052, DOI 10.1016/j.cell.2021.11.010
  45. Shlomchik MJ, 2012, IMMUNOL REV, V247, P52, DOI 10.1111/j.1600-065X.2012.01124.x
  46. Shukla R, 2020, FRONT CELL INFECT MI, V10, DOI 10.3389/fcimb.2020.572681
  47. Simmons CP, 2012, NEW ENGL J MED, V366, P1423, DOI 10.1056/NEJMra1110265
  48. Thomas SJ, 2009, AM J TROP MED HYG, V81, P825, DOI 10.4269/ajtmh.2009.08-0625
  49. Tu HA, 2020, CELL REP MED, V1, DOI 10.1016/j.xcrm.2020.100155
  50. Venturi G, 2006, J VIROL METHODS, V134, P136, DOI 10.1016/j.jviromet.2005.12.010
  51. Wec AZ, 2020, P NATL ACAD SCI USA, V117, P6675, DOI 10.1073/pnas.1921388117
  52. Wrammert J, 2012, J VIROL, V86, P2911, DOI 10.1128/JVI.06075-11
  53. Xu MH, 2012, J IMMUNOL, V189, P5877, DOI 10.4049/jimmunol.1201688
  54. Yoksan S, 2009, J CLIN VIROL, V46, pS13, DOI 10.1016/S1386-6532(09)70289-6
  55. Zompi S, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001568