Breast Implant Surfaces and Their Impact on Current Practices: Where We Are Now and Where Are We Going?

Carregando...
Imagem de Miniatura
Citações na Scopus
69
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
CLEMENS, Mark W.
NAHABEDIAN, Maurice Y.
Citação
PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, v.7, n.10, article ID e2466, 12p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Most commercially available breast implants feature some degree of elastomer surface modifications to increase surface roughness, in part because several clinical series have demonstrated positive outcomes from texturizing. However, the literature shows that textured implants support higher rates of bacterial growth, and there is a clear association between increased bacterial contamination and host response in vivo, such as capsular contracture. Furthermore, the infectious theory related to bacterial contamination has recently been described as a potential cause in the etiology of anaplastic large-cell lymphoma. Recent research has focused on the physiology of breast implant surfaces advances and how they interact with the body, creating new surface technologies which have the potential to affect all aspects of breast surgery. Understanding how surface properties affect inflammatory cell response will be essential in designing implants that can provide an esthetic solution while also minimizing long-term clinical complications. This special topic highlights the current knowledge on silicone implant surfaces, as well as innovations that have shaped and will continue to change the silicone breast implant industry in the future. It also provides an overview of the principal surfaces that exist and may find clinical applications in esthetic and reconstructive breast surgery. As additional advances emerge, objective tools will be required to evaluate the different surfaces available on the market, along with the long-term efficacy of new technologies.
Palavras-chave
Referências
  1. Adams WP, 2009, CLIN PLAST SURG, V36, P119, DOI 10.1016/j.cps.2008.08.007
  2. American Society of Plastic Surgeons, BIA ALCL PHYS RES
  3. American Society of Plastic Surgeons (ASPS), 2017 PLAST SURG STAT
  4. [Anonymous], 146072018 ISO
  5. ASHLEY FL, 1970, PLAST RECONSTR SURG, V45, P421, DOI 10.1097/00006534-197005000-00001
  6. Asplund O, 1996, PLAST RECONSTR SURG, V97, P1200, DOI 10.1097/00006534-199605000-00015
  7. Atlan M, 2018, J MECH BEHAV BIOMED, V88, P377, DOI 10.1016/j.jmbbm.2018.08.035
  8. Barnsley GP, 2006, PLAST RECONSTR SURG, V117, P2182, DOI 10.1097/01.prs.0000218184.47372.d5
  9. Barr S, 2017, J MECH BEHAV BIOMED, V75, P75, DOI 10.1016/j.jmbbm.2017.06.030
  10. Barr S, 2009, Eplasty, V9, pe22
  11. Barr S, 2011, AESTHET SURG J, V31, P56, DOI 10.1177/1090820X10390921
  12. BATICH C, 1989, J BIOMED MATER RES-A, V23, P311, DOI 10.1002/jbm.820231406
  13. Bengtson B, 2011, PLAST RECONSTR SURG, V128, P1, DOI 10.1097/PRS.0b013e318217fdb0
  14. Bhushan B., 2001, MODERN TRIBOLOGY HDB
  15. BHUSHAN B, 1999, PRINCIPLES APPL TRIB
  16. Cappellano G, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0192108
  17. Quiros MC, 2019, AESTHET SURG J, V39, P495, DOI 10.1093/asj/sjy196
  18. Chang DT, 2008, J BIOMED MATER RES A, V87A, P676, DOI 10.1002/jbm.a.31630
  19. Chang EI, 2018, PLAST RECONSTR SURG, V142, P42, DOI 10.1097/PRS.0000000000004471
  20. Chang WR, 2001, ERGONOMICS, V44, P1200, DOI 10.1080/00140130110085565
  21. Clemens MW, 2019, PLAST RECONSTR SURG, V143, P1295, DOI 10.1097/PRS.0000000000005588
  22. Clemens MW, 2018, PLAST RECONSTR SURG, V141, p586E, DOI 10.1097/PRS.0000000000004262
  23. Collett DJ, 2019, PLAST RECONSTR SURG, V143, DOI 10.1097/PRS.0000000000005567
  24. Cronin TD, 1964, T 3 INT C PLAST SURG, P13
  25. Danino AM, 2001, PLAST RECONSTR SURG, V108, P2047, DOI 10.1097/00006534-200112000-00032
  26. Danino MA, 2017, PLAST RECONSTR SURG, V140, P878, DOI 10.1097/PRS.0000000000003767
  27. Del Pozo JL, 2009, J CLIN MICROBIOL, V47, P1333, DOI 10.1128/JCM.00096-09
  28. Doren EL, 2017, PLAST RECONSTR SURG, V139, P1042, DOI 10.1097/PRS.0000000000003282
  29. Feng G, 2015, NPJ BIOFILMS MICROBI, V2, P15
  30. GREEN AM, 1994, J BIOMED MATER RES, V28, P647, DOI 10.1002/jbm.820280515
  31. Hall-Findlay EJ, 2011, PLAST RECONSTR SURG, V127, P56, DOI 10.1097/PRS.0b013e3181fad34d
  32. Hallab NJ, 2019, AESTHET SURG J, V39, pS36, DOI 10.1093/asj/sjy335
  33. Hansson K. N., 2011, ISRN MAT SCI, V2011
  34. Hester TR, 1997, PLAST RECONSTR SURG, V100, P1291, DOI 10.1097/00006534-199710000-00035
  35. Hsu LC, 2013, APPL ENVIRON MICROB, V79, P2703, DOI 10.1128/AEM.03436-12
  36. Hu H, 2016, PLAST RECONSTR SURG, V137, P1659, DOI 10.1097/PRS.0000000000002010
  37. Hu HH, 2015, PLAST RECONSTR SURG, V135, P319, DOI 10.1097/PRS.0000000000000886
  38. International Society of Plastic and Regenerative Surgeons (ISPRES), ISAPS STAT
  39. James GA, 2019, AESTHET PLAST SURG, V43, P490, DOI 10.1007/s00266-018-1234-7
  40. Jin ZM, 2006, CURR ORTHOPAED, V20, P32, DOI 10.1016/j.cuor.2005.09.005
  41. Jones P, 2018, PLAST RECONSTR SURG, V142, P837, DOI 10.1097/PRS.0000000000004801
  42. Khavanin N, 2017, PLAST RECONSTR SURG, V139, P1063, DOI 10.1097/PRS.0000000000003238
  43. Kyle DJT, 2015, BIOMATERIALS, V52, P88, DOI 10.1016/j.biomaterials.2015.02.003
  44. Lista F, 2013, PLAST RECONSTR SURG, V132, P1684, DOI 10.1097/PRS.0b013e3182a80880
  45. Loch-Wilkinson A, 2017, PLAST RECONSTR SURG, V140, P645, DOI 10.1097/PRS.0000000000003654
  46. Magnusson M, 2019, PLAST RECONSTR SURG, V143, P1285, DOI 10.1097/PRS.0000000000005500
  47. Maxwell GP, 2017, GLAND SURG, V6, P148, DOI 10.21037/gs.2016.11.09
  48. Miranda RN, 2019, PLAST RECONSTR SURG, V143, DOI 10.1097/PRS.0000000000005564
  49. Munhoz AM, 2019, PLAST RECONSTR SURG, V144, p143E, DOI 10.1097/PRS.0000000000005732
  50. Munhoz AM, 2017, CASE REP PLAST SURG, V4, P99, DOI 10.1080/23320885.2017.1407658
  51. Nava MB, 2018, PLAST RECONSTR SURG, V141, P40, DOI 10.1097/PRS.0000000000003933
  52. Olson PD, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1001287
  53. Pajkos A, 2003, PLAST RECONSTR SURG, V111, P1605, DOI 10.1097/01.PRS.0000054768.14922.44
  54. Poeppl N, 2007, AESTHET PLAST SURG, V31, P133, DOI 10.1007/s00266-006-0091-y
  55. Schaub TA, 2010, PLAST RECONSTR SURG, V126, P2140, DOI 10.1097/PRS.0b013e3181f2b5a2
  56. Sforza M, 2018, AESTHET SURG J, V38, pS62, DOI 10.1093/asj/sjx150
  57. Spaulding CN, 2018, NPJ BIOFILMS MICROBI, V4, DOI 10.1038/s41522-018-0048-3
  58. Spear SL, 2007, PLAST RECONSTR SURG, V120, p8S, DOI 10.1097/01.prs.0000286580.93214.df
  59. Tandon VJ, 2018, PLAST RECONSTR SURG, V142, P1456, DOI 10.1097/PRS.0000000000004977
  60. THOMAS TR, 1981, PRECIS ENG, V3, P97, DOI 10.1016/0141-6359(81)90043-X
  61. Valencia-Lazcano AA, 2013, J MECH BEHAV BIOMED, V21, P133, DOI 10.1016/j.jmbbm.2013.02.005
  62. Walker JN, 2019, SCI REP-UK, psjz099
  63. Whitehead KA, 2005, COLLOID SURFACE B, V41, P129, DOI 10.1016/j.colsurfb.2004.11.010
  64. Whitehouse D. J., 1994, HDB SURFACE METROLOG
  65. Wong CH, 2006, PLAST RECONSTR SURG, V118, P1224, DOI 10.1097/01.prs.0000237013.50283.d2
  66. Young VL, 2001, CLIN PLAST SURG, V28, P451