Endoplasmic Reticulum Stress and Autophagy Markers in Soleus Muscle Disuse-Induced Atrophy of Rats Treated with Fish Oil

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
MARZUCA-NASSR, Gabriel Nasri
KUWABARA, Wilson Mitsuo Tatagiba
VITZEL, Kaio Fernando
TORRES, Rosangela Pavan
MANCINI-FILHO, Jorge
ALBA-LOUREIRO, Tatiana Carolina
CURI, Rui
Citação
NUTRIENTS, v.13, n.7, article ID 2298, 15p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats were subjected to HS and the respective treatments concomitantly for an additional two-week period. After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius muscle omega-6/omega-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14) markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles undergoing atrophy.
Palavras-chave
omega-3 fatty acids, eicosapentanoic acid, docosahexaenoic acid, hindlimb suspension, skeletal muscle atrophy, unfolded protein response
Referências
  1. Abreu P, 2016, EXP PHYSIOL, V101, P1392, DOI 10.1113/EP085899
  2. Afroze D, 2019, FEBS J, V286, P379, DOI 10.1111/febs.14358
  3. Alibegovic AC, 2010, AM J PHYSIOL-ENDOC M, V299, pE752, DOI 10.1152/ajpendo.00590.2009
  4. Allen DL, 1997, AM J PHYSIOL-CELL PH, V273, pC579
  5. Almanza A, 2019, FEBS J, V286, P241, DOI 10.1111/febs.14608
  6. de Vasconcelos DAA, 2019, J NUTR BIOCHEM, V70, P202, DOI 10.1016/j.jnutbio.2019.05.010
  7. Baehr LM, 2017, J APPL PHYSIOL, V122, P1336, DOI 10.1152/japplphysiol.00703.2016
  8. Baehr LM, 2016, AGING-US, V8, P127, DOI 10.18632/aging.100879
  9. Bohnert KR, 2018, J CELL PHYSIOL, V233, P67, DOI 10.1002/jcp.25852
  10. Bonaldo P, 2013, DIS MODEL MECH, V6, P25, DOI 10.1242/dmm.010389
  11. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  12. Bravo R, 2013, INT REV CEL MOL BIO, V301, P215, DOI 10.1016/B978-0-12-407704-1.00005-1
  13. Bravo-Sagua R, 2020, INT REV CEL MOL BIO, V350, P197, DOI 10.1016/bs.ircmb.2019.12.007
  14. Calder PC, 2017, BIOCHEM SOC T, V45, P1105, DOI 10.1042/BST20160474
  15. Caron AZ, 2009, J APPL PHYSIOL, V106, P2049, DOI 10.1152/japplphysiol.91505.2008
  16. Chen DP, 2015, FRONT CELL NEUROSCI, V9, DOI 10.3389/fncel.2015.00170
  17. Chun Y, 2018, CELLS-BASEL, V7, DOI 10.3390/cells7120278
  18. Cruz-Jentoft AJ, 2020, MATURITAS, V132, P57, DOI 10.1016/j.maturitas.2019.11.007
  19. Deldicque L, 2012, EXERC SPORT SCI REV, V40, P43, DOI 10.1097/JES.0b013e3182355e8c
  20. Deldicque L, 2010, AM J PHYSIOL-ENDOC M, V299, pE695, DOI 10.1152/ajpendo.00038.2010
  21. Derbre F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046668
  22. Deval C, 2016, J CACHEXIA SARCOPENI, V7, P587, DOI 10.1002/jcsm.12103
  23. Dirks ML, 2018, J APPL PHYSIOL, V125, P850, DOI 10.1152/japplphysiol.00985.2016
  24. Dutt V, 2015, PHARMACOL RES, V99, P86, DOI 10.1016/j.phrs.2015.05.010
  25. Fan W, 2011, P NATL ACAD SCI USA, V108, P7769, DOI 10.1073/pnas.1016472108
  26. Fappi A, 2019, PHYSIOL REP, V7, DOI 10.14814/phy2.13966
  27. Fappi A, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/961438
  28. Flamment M, 2012, TRENDS ENDOCRIN MET, V23, P381, DOI 10.1016/j.tem.2012.06.003
  29. Fullgrabe J, 2016, J CELL SCI, V129, P3059, DOI 10.1242/jcs.188920
  30. Garg AD, 2012, TRENDS MOL MED, V18, P589, DOI 10.1016/j.molmed.2012.06.010
  31. Glick D, 2010, J PATHOL, V221, P3, DOI 10.1002/path.2697
  32. Gross AS, 2020, J MOL BIOL, V432, P28, DOI 10.1016/j.jmb.2019.09.005
  33. Gulow K, 2002, J CELL SCI, V115, P2443
  34. Harding HP, 1999, NATURE, V397, P271
  35. Harding HP, 2000, MOL CELL, V5, P897, DOI 10.1016/S1097-2765(00)80330-5
  36. Hsu HC, 2018, CELL BIOL TOXICOL, V34, P177, DOI 10.1007/s10565-017-9406-9
  37. Hu H, 2019, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.03083
  38. Itakura E, 2008, MOL BIOL CELL, V19, P5360, DOI 10.1091/mbc.E08-01-0080
  39. Iurlaro R, 2016, FEBS J, V283, P2640, DOI 10.1111/febs.13598
  40. Kang R, 2011, CELL DEATH DIFFER, V18, P571, DOI 10.1038/cdd.2010.191
  41. Kim HJ, 2011, MED SCI SPORT EXER, V43, P18, DOI 10.1249/MSS.0b013e3181e4c5d1
  42. Lee JH, 2020, NUTRIENTS, V12, DOI 10.3390/nu12092597
  43. Leermakers PA, 2019, MUSCLE NERVE, V60, P769, DOI 10.1002/mus.26702
  44. Li J, 2017, BONE, V97, P2, DOI 10.1016/j.bone.2016.12.009
  45. Lira VA, 2013, FASEB J, V27, P4184, DOI 10.1096/fj.13-228486
  46. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  47. Londhe P, 2015, BONE, V80, P131, DOI 10.1016/j.bone.2015.03.015
  48. Lupei S. G., 2020, Lipids in Health and Disease, V19, DOI 10.1186/s12944-020-01339-y
  49. Madaro L, 2013, FASEB J, V27, P1990, DOI 10.1096/fj.12-215475
  50. Mammucari C, 2007, CELL METAB, V6, P458, DOI 10.1016/j.cmet.2007.11.001
  51. Martins AR, 2018, J NUTR BIOCHEM, V55, P76, DOI 10.1016/j.jnutbio.2017.11.012
  52. Marzuca-Nassr GN, 2019, BRAZ J MED BIOL RES, V52, DOI [10.1590/1414-431X20198391, 10.1590/1414-431x20198391]
  53. Marzuca-Nassr Gabriel Nasri, 2019, Methods Mol Biol, V1916, P167, DOI 10.1007/978-1-4939-8994-2_16
  54. Marzuca-Nassr GN, 2017, NUTRIENTS, V9, DOI 10.3390/nu9101100
  55. Marzuca-Nassr GN, 2016, PHYSIOL REP, V4, DOI 10.14814/phy2.12958
  56. Masiero E, 2009, CELL METAB, V10, P507, DOI 10.1016/j.cmet.2009.10.008
  57. McClung JM, 2010, AM J PHYSIOL-CELL PH, V298, pC542, DOI 10.1152/ajpcell.00192.2009
  58. McGlory C, 2019, FRONT NUTR, V6, DOI 10.3389/fnut.2019.00144
  59. McGlory C, 2019, FASEB J, V33, P4586, DOI 10.1096/fj.201801857RRR
  60. Menon MB, 2018, FRONT CELL DEV BIOL, V6, DOI 10.3389/fcell.2018.00137
  61. Mizushima N, 2020, CURR OPIN CELL BIOL, V63, P1, DOI 10.1016/j.ceb.2019.12.001
  62. Mizushima N, 2011, ANNU REV CELL DEV BI, V27, P107, DOI 10.1146/annurev-cellbio-092910-154005
  63. Marzuca-Nassr GN, 2020, ADV EXP MED BIOL, V1260, P123, DOI 10.1007/978-3-030-42667-5_6
  64. Oliveira JRS, 2019, EXP GERONTOL, V115, P19, DOI 10.1016/j.exger.2018.11.011
  65. Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
  66. Punkt K, 2004, ACTA HISTOCHEM, V106, P145, DOI 10.1016/j.acthis.2003.11.005
  67. Ron D, 2007, NAT REV MOL CELL BIO, V8, P519, DOI 10.1038/nrm2199
  68. Fortes MAS, 2016, ANAL BIOCHEM, V504, P38, DOI 10.1016/j.ab.2016.03.023
  69. Sanchez AMJ, 2012, J CELL BIOCHEM, V113, P695, DOI 10.1002/jcb.23399
  70. Singh Ajay, 2021, Biophys Rev, V13, P203, DOI 10.1007/s12551-021-00789-7
  71. Smith GI, 2011, CLIN SCI, V121, P267, DOI 10.1042/CS20100597
  72. Smith GI, 2011, AM J CLIN NUTR, V93, P402, DOI 10.3945/ajcn.110.005611
  73. Song SL, 2018, J CELL PHYSIOL, V233, P3867, DOI 10.1002/jcp.26137
  74. Kuwabara WMT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116410
  75. Tyagi R, 2015, CELL REP, V10, P684, DOI 10.1016/j.celrep.2015.01.014
  76. Ulbricht A, 2015, AUTOPHAGY, V11, P538, DOI 10.1080/15548627.2015.1017186
  77. Wackerhage H, 2019, J APPL PHYSIOL, V126, P30, DOI 10.1152/japplphysiol.00685.2018
  78. Woodworth-Hobbs ME, 2017, PHYSIOL REP, V5, DOI 10.14814/phy2.13530
  79. You JS, 2010, APPL PHYSIOL NUTR ME, V35, P310, DOI 10.1139/H10-022
  80. Yu L, 2018, AUTOPHAGY, V14, P207, DOI 10.1080/15548627.2017.1378838
  81. Yuasa K, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26632-w