Prognostic Value of Bone Marrow Uptake Using 18F-FDG PET/CT Scans in Solid Neoplasms

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
JOURNAL OF IMAGING, v.8, n.11, article ID 297, 16p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Fluorine-18-fluorodeoxyglucose positron emission tomography/computerized tomography (18F-FDG PET/CT) uptake is known to increase in infective and inflammatory conditions. Systemic inflammation plays a role in oncologic prognosis. Consequently, bone marrow increased uptake in oncology patients could potentially depict the systemic cancer burden. Methods: A single institute cohort analysis and a systematic review were performed, evaluating the prognostic role of 18F-FDG uptake in the bone marrow in solid neoplasms before treatment. The cohort included 113 esophageal cancer patients (adenocarcinoma or squamous cell carcinoma). The systematic review was based on 18 studies evaluating solid neoplasms, including gynecological, lung, pleura, breast, pancreas, head and neck, esophagus, stomach, colorectal, and anus. Results: Bone marrow 18F-FDG uptake in esophageal cancer was not correlated with staging, pathological response, and survival. High bone marrow uptake was related to advanced staging in colorectal, head and neck, and breast cancer, but not in lung cancer. Bone marrow 18F-FDG uptake was significantly associated with survival rates for lung, head and neck, breast, gastric, colorectal, pancreatic, and gynecological neoplasms but was not significantly associated with survival in pediatric neuroblastoma and esophageal cancer. Conclusion: 18F-FDG bone marrow uptake in PET/CT has prognostic value in several solid neoplasms, including lung, gastric, colorectal, head and neck, breast, pancreas, and gynecological cancers. However, future studies are still needed to define the role of bone marrow role in cancer prognostication.
Palavras-chave
bone marrow, esophageal neoplasms, neoadjuvant therapy, positron emission tomography, nuclear medicine
Referências
  1. Boellaard R, 2015, EUR J NUCL MED MOL I, V42, P328, DOI 10.1007/s00259-014-2961-x
  2. Devesa A, 2022, EUR HEART J, V43, P1809, DOI 10.1093/eurheartj/ehac102
  3. Griffeth Landis K, 2005, Proc (Bayl Univ Med Cent), V18, P321
  4. Hu LH, 2017, ONCOTARGET, V8, P16027, DOI 10.18632/oncotarget.13784
  5. Inoue K, 2009, ANN NUCL MED, V23, P643, DOI 10.1007/s12149-009-0286-9
  6. Jamar F, 2013, J NUCL MED, V54, P647, DOI 10.2967/jnumed.112.112524
  7. Kung BT, 2019, AM J NUCL MED MOLEC, V9, P255
  8. Kwon HC, 2012, BIOMARKERS, V17, P216, DOI 10.3109/1354750X.2012.656705
  9. Lee JH, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-91608-2
  10. Lee JW, 2021, CANCERS, V13, DOI 10.3390/cancers13143563
  11. Lee JW, 2020, EJNMMI RES, V10, DOI 10.1186/s13550-020-00660-y
  12. Lee JW, 2019, J CLIN MED, V8, DOI 10.3390/jcm8081169
  13. Lee JW, 2018, LUNG CANCER, V118, P41, DOI 10.1016/j.lungcan.2018.01.020
  14. Lee JW, 2018, EUR J GASTROEN HEPAT, V30, P187, DOI 10.1097/MEG.0000000000001018
  15. Lee JW, 2017, INT J GYNECOL CANCER, V27, P776, DOI 10.1097/IGC.0000000000000949
  16. Lee JW, 2017, WORLD J GASTROENTERO, V23, P2385, DOI 10.3748/wjg.v23.i13.2385
  17. Lee JW, 2017, EUR RADIOL, V27, P1912, DOI 10.1007/s00330-016-4568-z
  18. Lee JW, 2017, CLIN LUNG CANCER, V18, P198, DOI 10.1016/j.cllc.2016.07.001
  19. Li C, 2018, EUR J NUCL MED MOL I, V45, P306, DOI 10.1007/s00259-017-3851-9
  20. Li TC, 2020, QUANT IMAG MED SURG, V10, P2285, DOI 10.21037/qims-19-962
  21. Mattonen SA, 2019, RADIOLOGY, V293, P451, DOI 10.1148/radiol.2019190357
  22. Moher David, 2009, Ann Intern Med, V151, P264, DOI [10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535]
  23. Ning KT, 2022, MOL METAB, V58, DOI 10.1016/j.molmet.2022.101450
  24. Ozmen O, 2016, NUCL MED COMMUN, V37, P43, DOI 10.1097/MNM.0000000000000402
  25. Patel NH, 2021, ATHEROSCLEROSIS, V339, P20, DOI 10.1016/j.atherosclerosis.2021.11.008
  26. Pijl JP, 2021, EUR J NUCL MED MOL I, V48, P1467, DOI 10.1007/s00259-020-05071-8
  27. Prevost S, 2006, J NUCL MED, V47, P559
  28. Rassouli A, 2015, HEAD NECK-J SCI SPEC, V37, P103, DOI 10.1002/hed.23567
  29. Rice TW, 2017, ANN CARDIOTHORAC SUR, V6, P119, DOI 10.21037/acs.2017.03.14
  30. Schunemann H., 2013, HDB GRADING QUALITY
  31. Seban RD, 2019, ONCOIMMUNOLOGY, V8, DOI 10.1080/2162402X.2019.1574197
  32. Shimura K, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-81298-1
  33. Smith RA, 2009, AM J SURG, V197, P466, DOI 10.1016/j.amjsurg.2007.12.057
  34. Smyth MJ, 2006, ADV IMMUNOL, V90, P1, DOI 10.1016/S0065-2776(06)90001-7
  35. Sterne JAC, 2016, BMJ-BRIT MED J, V355, DOI 10.1136/bmj.i4919
  36. Szor DJ, 2018, CLINICS, V73, DOI 10.6061/clinics/2018/e360
  37. Takeda FR, 2020, ANN SURG ONCOL, V27, P1241, DOI 10.1245/s10434-019-07967-8
  38. Tustumi Francisco, 2022, Radiol Bras, V55, P286, DOI 10.1590/0100-3984.2021.0135
  39. Tustumi F, 2021, NUCL MED COMMUN, V42, P437, DOI 10.1097/MNM.0000000000001347
  40. Tustumi F, 2020, J SURG ONCOL, V121, P784, DOI 10.1002/jso.25778
  41. TUSTUMI Francisco, 2019, Arq. Gastroenterol., V56, P377, DOI [10.1590/S0004-2803.201900000-70, 10.1590/s0004-2803.201900000-70]
  42. Valls L, 2016, BLOOD REV, V30, P317, DOI 10.1016/j.blre.2016.02.003
  43. Wang CY, 2009, RADIOTHER ONCOL, V92, P270, DOI 10.1016/j.radonc.2009.01.002
  44. Yanagawa M, 2012, J NUCL MED, V53, P872, DOI 10.2967/jnumed.111.098699
  45. Zhang L, 2016, CELL PHYSIOL BIOCHEM, V39, P1391, DOI 10.1159/000447843