Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum

Carregando...
Imagem de Miniatura
Citações na Scopus
88
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, v.617, Special Issue, p.106-119, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de) glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the ""all-in-one"" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets. (C) 2016 Published by Elsevier Inc.
Palavras-chave
Redox signaling, Protein disulfide isomerase, Thiol proteins, Thrombosis, Endothelial cells, Endoplasmic reticulum
Referências
  1. Amanso AM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014591
  2. Apperizeller-Herzog C, 2008, BBA-MOL CELL RES, V1783, P535, DOI 10.1016/j.bbamcr.2007.11.010
  3. Aragao AZB, 2012, J BIOL CHEM, V287, P43071, DOI 10.1074/jbc.M112.364513
  4. Araki K, 2013, J CELL BIOL, V202, P861, DOI 10.1083/jcb.201303027
  5. Atkin JD, 2006, J BIOL CHEM, V281, P30152, DOI 10.1074/jbc.M603393200
  6. Avezov E, 2015, BMC BIOL, V13, DOI 10.1186/s12915-014-0112-2
  7. Avezov E, 2013, J CELL BIOL, V201, P337, DOI 10.1083/jcb.201211155
  8. Baksh S, 1995, J BIOL CHEM, V270, P31338
  9. Bartzt R, 2007, J PROTEOME RES, V6, P3256, DOI 10.1021/pr070158j
  10. Bastos-Aristizabal S, 2014, PROTEIN SCI, V23, P618, DOI 10.1002/pro.2444
  11. Bechor E, 2015, FRONT CHEM, V3, DOI 10.3389/fchem.2015.00003
  12. Bekendam RH, 2016, BASIC CLIN PHARMACOL, V119, P42, DOI 10.1111/bcpt.12573
  13. Benham AM, 2012, ANTIOXID REDOX SIGN, V16, P781, DOI 10.1089/ars.2011.4439
  14. Bernardi KM, 2008, MOL BIOL CELL, V19, P877, DOI 10.1091/mbc.E07-08-0755
  15. Bessler WK, 2016, FREE RADICAL BIO MED, V97, P212, DOI [10.1016/j.freeradbiomed.2016.06.002, 10.1016/j.freeradbiomed.2016.05.002]
  16. Bhopale VM, 2015, J BIOL CHEM, V290, P17474, DOI 10.1074/jbc.M115.651620
  17. Bi SG, 2011, P NATL ACAD SCI USA, V108, P10650, DOI 10.1073/pnas.1017954108
  18. Bordoli MR, 2014, CELL, V158, P1033, DOI 10.1016/j.cell.2014.06.048
  19. Bosello-Travain V, 2013, BBA-GEN SUBJECTS, V1830, P3846, DOI 10.1016/j.bbagen.2013.02.017
  20. Bottomley MJ, 2001, CURR BIOL, V11, P1114, DOI 10.1016/S0960-9822(01)00317-7
  21. Bradbury P, 1999, J BIOL CHEM, V274, P3159, DOI 10.1074/jbc.274.5.3159
  22. Brophy TM, 2013, J BIOL CHEM, V288, P10628, DOI 10.1074/jbc.M112.439034
  23. Byrne LJ, 2009, BIOCHEM J, V423, P209, DOI 10.1042/BJ20090565
  24. Cha-Molstad H, 2015, NAT CELL BIOL, V17, P917, DOI 10.1038/ncb3177
  25. Chakravarthi S, 2006, EMBO REP, V7, P271, DOI 10.1038/sj.embor.7400645
  26. Chen JX, 2010, J BIOL CHEM, V285, P37041, DOI 10.1074/jbc.M110.157115
  27. CHEN K, 1995, BRIT J HAEMATOL, V90, P425, DOI 10.1111/j.1365-2141.1995.tb05169.x
  28. Cheng H, 2010, CELL STRESS CHAPERON, V15, P415, DOI 10.1007/s12192-009-0157-2
  29. Cheung PY, 1999, BIOCHEM BIOPH RES CO, V255, P17, DOI 10.1006/bbrc.1998.0135
  30. Chiu J, 2015, SEMIN THROMB HEMOST, V41, P765, DOI 10.1055/s-0035-1564047
  31. Cho J, 2013, J THROMB HAEMOST, V11, P2084, DOI 10.1111/jth.12413
  32. Cho J, 2008, J CLIN INVEST, V118, P1123, DOI 10.1172/JCI34134
  33. Cho J, 2012, BLOOD, V120, P647, DOI 10.1182/blood-2011-08-372532
  34. Cho K, 2011, ANTIOXID REDOX SIGN, V15, P621, DOI 10.1089/ars.2010.3756
  35. Christis C, 2008, FEBS J, V275, P4700, DOI 10.1111/j.1742-4658.2008.06590.x
  36. Conway ME, 2004, BIOCHEMISTRY-US, V43, P7356, DOI 10.1021/bi0498050
  37. Cox AG, 2009, BIOCHEMISTRY-US, V48, P6495, DOI 10.1021/bi900558g
  38. Crescente M, 2016, ARTERIOSCL THROM VAS, V36, P1164, DOI 10.1161/ATVBAHA.116.307461
  39. Cuozzo JW, 1999, NAT CELL BIOL, V1, P130
  40. de A. P. A., 2011, J LEUKOCYTE BIOL, V90, P799, DOI 10.1189/JLB.0610324
  41. Del Vecchio D, 2016, J R SOC INTERFACE, V13, DOI 10.1098/rsif.2016.0380
  42. Delic M, 2012, FREE RADICAL BIO MED, V52, P2000, DOI 10.1016/j.freeradbiomed.2012.02.048
  43. Denoncin K, 2014, J BIOL CHEM, V289, P12356, DOI 10.1074/jbc.M114.554055
  44. Dias FF, 2014, J HISTOCHEM CYTOCHEM, V62, P450, DOI 10.1369/0022155414531437
  45. Dusterhoft S, 2014, J BIOL CHEM, V289, P16336, DOI 10.1074/jbc.M114.557322
  46. Dusterhoft S, 2013, J AM CHEM SOC, V135, P5776, DOI 10.1021/ja400340u
  47. El Hindy M, 2014, ANTIOXID REDOX SIGN, V20, P2497, DOI 10.1089/ars.2012.4869
  48. Eletto D, 2014, MOL CELL, V53, P562, DOI 10.1016/j.molcel.2014.01.004
  49. Ellis RJ, 2006, TRENDS BIOCHEM SCI, V31, P395, DOI 10.1016/j.tibs.2006.05.001
  50. Essex DW, 2009, ANTIOXID REDOX SIGN, V11, P1191, DOI 10.1089/ARS.2008.2322
  51. Fernandes DC, 2009, ARCH BIOCHEM BIOPHYS, V484, P197, DOI 10.1016/j.abb.2009.01.022
  52. Fernandes DD, 2010, OXID STRESS APPL BAS, P1, DOI 10.1007/978-1-60761-600-9_1
  53. Flaumenhaft R, 2016, BLOOD, V128, P893, DOI 10.1182/blood-2016-04-636456
  54. Fratelli M, 2002, P NATL ACAD SCI USA, V99, P3505, DOI 10.1073/pnas.052592699
  55. Furie B, 2014, CIRC RES, V114, P1162, DOI 10.1161/CIRCRESAHA.114.301808
  56. Galligan JJ, 2012, HUM GENOMICS, V6, DOI 10.1186/1479-7364-6-6
  57. Gallina A, 2002, J BIOL CHEM, V277, P50579, DOI 10.1074/jbc.M204547200
  58. Gambim MH, 2007, CRIT CARE, V11, DOI 10.1186/cc6133
  59. Go YM, 2013, AM J PHYSIOL-LUNG C, V305, pL831, DOI 10.1152/ajplung.00203.2013
  60. Gonzalez-Perez P, 2015, GENE, V566, P158, DOI 10.1016/j.gene.2015.04.035
  61. Groenendyk J, 2014, SCI SIGNAL, V7, DOI 10.1126/scisignal.2004983
  62. Grubb S, 2012, MOL BIOL CELL, V23, P520, DOI 10.1091/mbc.E11-08-0704
  63. Hahm E, 2013, BLOOD, V121, P3789, DOI 10.1182/blood-2012-11-467985
  64. Halloran M., 2013, INT J CELL BIOL, V2013, DOI 10.1155/2013/797914
  65. Hanania R, 2012, J BIOL CHEM, V287, P8468, DOI 10.1074/jbc.M111.290676
  66. Hashimoto S, 2013, J BIOL CHEM, V288, P1706, DOI 10.1074/jbc.M112.365239
  67. Hatahet F, 2009, ANTIOXID REDOX SIGN, V11, P2807, DOI 10.1089/ARS.2009.2466
  68. HAUGEJORDEN SM, 1991, J BIOL CHEM, V266, P6015
  69. He KY, 2015, MOL BIOL CELL, V26, P3413, DOI 10.1091/mbc.E15-01-0034
  70. Heckler EJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143523
  71. Heckler EJ, 2013, BIOCHEM J, V452, P161, DOI 10.1042/BJ20130298
  72. Higa A, 2014, MOL CELL BIOL, V34, P1839, DOI 10.1128/MCB.01484-13
  73. Hsu C, 2016, CELL REP, V16, P1204, DOI 10.1016/j.celrep.2016.06.072
  74. Hudson DA, 2015, FREE RADICAL BIO MED, V80, P171, DOI 10.1016/j.freeradbiomed.2014.07.037
  75. Inaba K, 2009, J BIOCHEM, V146, P591, DOI 10.1093/jb/mvp102
  76. Inagaki K, 2015, FEBS LETT, V589, P2690, DOI 10.1016/j.febslet.2015.07.041
  77. Iqbal A, 2014, ARCH BIOCHEM BIOPHYS, V557, P72, DOI 10.1016/j.abb.2014.06.013
  78. Janiszewski M, 2005, J BIOL CHEM, V280, P40813, DOI 10.1074/jbc.M509255200
  79. Jasuja R, 2010, BLOOD, V116, P4665, DOI 10.1182/blood-2010-04-278184
  80. JOHN DCA, 1993, EMBO J, V12, P1587
  81. Kabiraj P., 2016, ACS CHEM NEUROSCI
  82. Kakihana T, 2013, J BIOL CHEM, V288, P29586, DOI 10.1074/jbc.M113.467845
  83. Kang K, 2009, ANTIOXID REDOX SIGN, V11, P2553, DOI 10.1089/ARS.2009.2465
  84. Kaplan A, 2015, P NATL ACAD SCI USA, V112, pE2245, DOI 10.1073/pnas.1500439112
  85. Karala AR, 2009, ANTIOXID REDOX SIGN, V11, P963, DOI 10.1089/ARS.2008.2326
  86. Karala AR, 2010, FEBS J, V277, P2454, DOI 10.1111/j.1742-4658.2010.07660.x
  87. Kenche H, 2016, J BIOL CHEM, V291, P4763, DOI 10.1074/jbc.M115.712331
  88. Kim JM, 1997, SCIENCE, V278, P1954, DOI 10.1126/science.278.5345.1954
  89. Kim K, 2013, BLOOD, V122, P1052, DOI 10.1182/blood-2013-03-492504
  90. Kim TS, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2734-y
  91. Ko HS, 2002, J BIOL CHEM, V277, P35386, DOI 10.1074/jbc.M203412200
  92. Koivunen P, 2005, J BIOL CHEM, V280, P5227, DOI 10.1074/jbc.M412480200
  93. Kojima R, 2014, STRUCTURE, V22, P431, DOI 10.1016/j.str.2013.12.013
  94. Kozlov G, 2010, FEBS J, V277, P3924, DOI 10.1111/j.1742-4658.2010.07793.x
  95. Lahav J, 2000, FEBS LETT, V475, P89, DOI 10.1016/S0014-5793(00)01630-6
  96. Lahav J, 2002, BLOOD, V100, P2472, DOI 10.1182/blood-2002-12-0339
  97. Langenbach KJ, 1999, J BIOL CHEM, V274, P7032, DOI 10.1074/jbc.274.11.7032
  98. Lappi AK, 2011, J MOL BIOL, V409, P238, DOI 10.1016/j.jmb.2011.03.024
  99. Lassegue B, 2012, CIRC RES, V110, P1364, DOI 10.1161/CIRCRESAHA.111.243972
  100. Laurindo FRM, 2014, ANTIOXID REDOX SIGN, V20, P2755, DOI 10.1089/ars.2013.5605
  101. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  102. Camargo Lde L., 2013, FREE RADIC BIOL MED, V65, P1398, DOI 10.1016/J.FREERADBIOMED.2013.09.028
  103. Lee S, 2014, EMBO MOL MED, V6, P732, DOI 10.15252/emmm.201302561
  104. Lee SO, 2010, EMBO J, V29, P363, DOI 10.1038/emboj.2009.359
  105. Lippok S, 2016, BLOOD, V127, P1183, DOI 10.1182/blood-2015-04-641902
  106. LUNDSTROM J, 1993, BIOCHEMISTRY-US, V32, P6649, DOI 10.1021/bi00077a018
  107. MANDEL R, 1993, P NATL ACAD SCI USA, V90, P4112, DOI 10.1073/pnas.90.9.4112
  108. Markovic I, 2004, BLOOD, V103, P1586, DOI 10.1182/blood-2003-05-1390
  109. Meirelles T, 2016, INT J BIOCHEM CELL B, V71, P81, DOI 10.1016/j.biocel.2015.12.009
  110. Merksamer PI, 2008, CELL, V135, P933, DOI 10.1016/j.cell.2008.10.011
  111. Mezghrani A, 2000, J BIOL CHEM, V275, P1920, DOI 10.1074/jbc.275.3.1920
  112. Milev Y, 1999, ARCH BIOCHEM BIOPHYS, V361, P120, DOI 10.1006/abbi.1998.0963
  113. Molteni SN, 2004, J BIOL CHEM, V279, P32667, DOI 10.1074/jbc.M404992200
  114. Montane J, 2016, MOL CELL ENDOCRINOL, V420, P57, DOI 10.1016/j.mce.2015.11.018
  115. Moore P, 2010, MOL BIOL CELL, V21, P1305, DOI 10.1091/mbc.E09-09-0826
  116. Moutevelis E, 2004, PROTEIN SCI, V13, P2744, DOI 10.1110/ps.04804504
  117. Nemere I, 2004, P NATL ACAD SCI USA, V101, P7392, DOI 10.1073/pnas.0402207101
  118. Oberckal J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120692
  119. Oka OBV, 2013, MOL CELL, V50, P793, DOI 10.1016/j.molcel.2013.05.014
  120. Okada K, 2016, BIOCHEM BIOPH RES CO, V477, P495, DOI 10.1016/j.bbrc.2016.06.066
  121. OTSU M, 1994, J BIOL CHEM, V269, P6874
  122. Pace PE, 2013, BIOCHEM J, V453, P475, DOI 10.1042/BJ20130030
  123. Park SW, 2009, P NATL ACAD SCI USA, V106, P6950, DOI 10.1073/pnas.0808722106
  124. Peaper DR, 2005, EMBO J, V24, P3613, DOI 10.1038/sj.emboj.7600814
  125. Peltoniemi MJ, 2006, J BIOL CHEM, V281, P33107, DOI 10.1074/jbc.M605602200
  126. Pena E, 2015, THROMB HAEMOSTASIS, V113, P891, DOI 10.1160/TH14-09-0776
  127. Petrosyan A, 2014, MOL CANCER RES, V12, P1704, DOI 10.1158/1541-7786.MCR-14-0291-T
  128. Piccirella S, 2006, J BIOL CHEM, V281, P4671
  129. Popescu NI, 2010, BLOOD, V116, P993, DOI 10.1182/blood-2009-10-249607
  130. Primm TP, 2001, J BIOL CHEM, V276, P281, DOI 10.1074/jbc.M007670200
  131. Prinz WA, 1997, J BIOL CHEM, V272, P15661, DOI 10.1074/jbc.272.25.15661
  132. PUIG A, 1994, J BIOL CHEM, V269, P7764
  133. Quan S, 2007, J BIOL CHEM, V282, P28823, DOI 10.1074/jbc.M705291200
  134. Rajpal G, 2012, J BIOL CHEM, V287, P43, DOI 10.1074/jbc.C111.279927
  135. Raturi A, 2008, BBA-BIOMEMBRANES, V1778, P2790, DOI 10.1016/j.bbamem.2008.07.003
  136. Rauch F, 2015, AM J HUM GENET, V96, P425, DOI 10.1016/j.ajhg.2014.12.027
  137. Reinhardt C, 2008, J CLIN INVEST, V118, P1110, DOI 10.1172/JCI32376
  138. Romer RA, 2016, PROTEINS, V84, P1776, DOI 10.1002/prot.25159
  139. Ruiz CA, 2009, J BIOL CHEM, V284, P31753, DOI 10.1074/jbc.M109.038471
  140. Russell SJ, 2004, J BIOL CHEM, V279, P18861, DOI 10.1074/jbc.M400575200
  141. Safavi-Hemami H, 2016, P NATL ACAD SCI USA, V113, P3227, DOI 10.1073/pnas.1525790113
  142. Santos CXC, 2009, ANTIOXID REDOX SIGN, V11, P2409, DOI 10.1089/ARS.2009.2625
  143. Santos CXC, 2009, J LEUKOCYTE BIOL, V86, P989, DOI 10.1189/jlb.0608354
  144. Schultz-Norton JR, 2006, MOL ENDOCRINOL, V20, P1982, DOI 10.1210/me.2006-0006
  145. Schulz E, 2016, HYPERTENSION, V67, P488, DOI 10.1161/HYPERTENSIONAHA.115.06296
  146. Sharda A, 2015, BLOOD, V125, P1633, DOI 10.1182/blood-2014-08-597419
  147. Sobierajska K, 2014, J BIOL CHEM, V289, P5758, DOI 10.1074/jbc.M113.479477
  148. Soderberg A, 2013, ANTIOXID REDOX SIGN, V18, P363, DOI 10.1089/ars.2012.4789
  149. Solomon SS, 2005, J LAB CLIN MED, V145, P275, DOI 10.1016/j.lab.2005.02.013
  150. Solovyov A, 2004, PROTEIN SCI, V13, P1902, DOI 10.1110/ps.04716104
  151. Song JL, 1997, BIOCHEM J, V328, P841
  152. SONG JL, 1995, EUR J BIOCHEM, V231, P312, DOI 10.1111/j.1432-1033.1995.tb20702.x
  153. Stockton JD, 2003, BIOCHEMISTRY-US, V42, P12821, DOI 10.1021/bi035087q
  154. Sun SY, 2015, P NATL ACAD SCI USA, V112, pE6993, DOI 10.1073/pnas.1520639112
  155. Swiatkowska M, 2008, FEBS J, V275, P1813, DOI 10.1111/j.1742-4658.2008.06339.x
  156. Tanaka LY, 2016, HYPERTENSION, V67, P613, DOI 10.1161/HYPERTENSIONAHA.115.06177
  157. Tavender TJ, 2010, ANTIOXID REDOX SIGN, V13, P1177, DOI 10.1089/ars.2010.3230
  158. Taylor M, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1003925
  159. Tian G, 2008, J BIOL CHEM, V283, P33630, DOI 10.1074/jbc.M806026200
  160. Torres M, 2015, J BIOL CHEM, V290, P23631, DOI 10.1074/jbc.M114.635565
  161. Townsend DM, 2009, CANCER RES, V69, P7626, DOI 10.1158/0008-5472.CAN-09-0493
  162. Trevelin SC, 2015, CURR PHARM DESIGN, V21, P5951, DOI 10.2174/1381612821666151029112523
  163. Trindade DF, 2006, CHEM RES TOXICOL, V19, P1475, DOI 10.1021/tx060146x
  164. Tsai B, 2001, CELL, V104, P937, DOI 10.1016/S0092-8674(01)00289-6
  165. Tsai YL, 2015, J BIOL CHEM, V290, P8049, DOI 10.1074/jbc.M114.618736
  166. Turano C, 2002, J CELL PHYSIOL, V193, P154, DOI 10.1002/jcp.10172
  167. Vallon M, 2012, BIOCHEM J, V441, P937, DOI 10.1042/BJ20111682
  168. Vatolin S, 2016, CANCER RES, V76, P3340, DOI 10.1158/0008-5472.CAN-15-3099
  169. Wajih N, 2007, J BIOL CHEM, V282, P2626, DOI 10.1074/jbc.M608954200
  170. Wan SW, 2012, J CELL BIOCHEM, V113, P1681, DOI 10.1002/jcb.24037
  171. Wang L, 2015, ONCOGENE, V34, P4735, DOI 10.1038/onc.2014.401
  172. Wang L, 2015, FREE RADICAL BIO MED, V83, P305, DOI 10.1016/j.freeradbiomed.2015.02.007
  173. Wang L, 2014, ANTIOXID REDOX SIGN, V20, P545, DOI 10.1089/ars.2013.5236
  174. Wang LK, 2008, EMBO REP, V9, P642, DOI 10.1038/embor.2008.88
  175. Wang SY, 2015, MOL BIOL CELL, V26, P594, DOI 10.1091/mbc.E14-08-1274
  176. Watson WH, 2003, J BIOL CHEM, V278, P33408, DOI 10.1074/jbc.M211107200
  177. Wearsch PA, 2007, NAT IMMUNOL, V8, P873, DOI 10.1038/ni1485
  178. WETTERAU JR, 1990, J BIOL CHEM, V265, P9800
  179. WETTERAU JR, 1991, BIOCHEMISTRY-US, V30, P9728, DOI 10.1021/bi00104a023
  180. Willems SH, 2010, BIOCHEM J, V428, P439, DOI 10.1042/BJ20100179
  181. Winter J, 2002, J BIOL CHEM, V277, P310, DOI 10.1074/jbc.M107832200
  182. Winter J, 2011, PROTEIN SCI, V20, P588, DOI 10.1002/pro.592
  183. Winterbourn CC, 2008, FREE RADICAL BIO MED, V45, P549, DOI 10.1016/j.freeradbiomed.2008.05.004
  184. Woehlbier U, 2016, EMBO J, V35, P845, DOI 10.15252/embj.201592224
  185. Woycechowsky KJ, 2003, BIOCHEMISTRY-US, V42, P5387, DOI 10.1021/bi026993q
  186. Wu WQ, 2010, EXP CELL RES, V316, P1101, DOI 10.1016/j.yexcr.2010.01.010
  187. Xu SL, 2012, P NATL ACAD SCI USA, V109, P16348, DOI 10.1073/pnas.1205226109
  188. Yanagida M, 2000, ELECTROPHORESIS, V21, P1890
  189. Ye Z.W., 2016, ANTIOXID REDOX SIGNA
  190. Zai A, 1999, J CLIN INVEST, V103, P393, DOI 10.1172/JCI4890
  191. Zhao TJ, 2005, J BIOL CHEM, V280, P13470, DOI 10.1074/jbc.M413882200
  192. Zhou JS, 2015, J CLIN INVEST, V125, P4391, DOI 10.1172/JCI80319
  193. Zhu L, 2010, REPRODUCTION, V139, P717, DOI 10.1530/REP-09-0527
  194. Zito E, 2012, MOL CELL, V48, P39, DOI 10.1016/j.molcel.2012.08.010