Brief Research Report: Expression of PD-1 and CTLA-4 in T Lymphocytes and Their Relationship With the Periparturient Period and the Endometrial Cytology of Dairy Cows During the Postpartum Period

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SOUZA, Carolina Menezes Suassuna de
LIMA, Ewerton de Souza
ORDONHO, Raphael Ferreira
OLIVEIRA, Bianca Rafaella Rodrigues dos Santos
RODRIGUES, Rebeca Cordeiro
MOURA, Marquiliano Farias de
LIMA, Daniel Magalhaes
BLAGITZ, Maiara Garcia
MEDEIROS, Isac Almeida de
Citação
FRONTIERS IN VETERINARY SCIENCE, v.9, article ID 928521, 7p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The present study sought to evaluate the expression of PD-1 and CTLA-4 in blood T lymphocytes during the periparturient period and their relationship with uterine health in dairy cows, as determined by endometrial cytology and serum concentrations of beta-hydroxybutyrate (BHB) and non-esterified fatty acids (NEFAs), which are indicators of a negative energy balance. The second objective of this study was to investigate whether the expression of PD-1 and CTLA-4 in T lymphocytes is associated with the serum acute phase-protein haptoglobin concentration during the periparturient period. To address these objectives, 26 clinically healthy dairy cows were used. Peripheral blood was collected 14 days prepartum (T-14), at calving (T0), and 30 days postpartum (T30) to measure the expression of PD-1 and CTLA-4 in blood T lymphocytes by flow cytometry. In addition, we collected blood at T0, 10 days after parturition (T10), and T30 to obtain serum and determine the serum concentrations of NEFA, BHB, and Hp. Endometrial cytology was performed at T10, 20 days after parturition (T20), and T30. In the present study, we observed higher expression of CTLA-4 and PD-1 in T lymphocytes at parturition and in the prepartum period, which could indicate a relationship between these immune checkpoints and immunological tolerance during gestation in dairy cattle. In addition, a negative association between the expression of these immune checkpoints prepartum or at parturition and endometrial cytology at T20 and T30 was observed, indicating the negative implications of these immune response regulators in susceptibility to infections. This finding was further corroborated by the relationship between the serum concentration of haptoglobin and the expression of CTLA-4 and PD-1 by T lymphocytes. However, we did not observe a relationship between the indicators of negative energy balance, evaluated by the serum concentrations of BHB and NEFA, and the expression of the immune checkpoint markers studied. Thus, our findings represent an initial step that paves the way for the development of new therapeutic alternatives directed by the host with the objective of increasing the resistance of dairy cattle to infections in this critical period of life.
Palavras-chave
immune checkpoints, endometrial cytology, transition period, endometritis, dairy cow
Referências
  1. Andrikopoulou A, 2021, ESMO OPEN, V6, DOI 10.1016/j.esmoop.2021.100262
  2. Arck PC, 2013, NAT MED, V19, P548, DOI 10.1038/nm.3160
  3. Brandao AP, 2016, J DAIRY SCI, V99, P5562, DOI 10.3168/jds.2015-10621
  4. Buchbinder EI, 2016, AM J CLIN ONCOL-CANC, V39, P98, DOI 10.1097/COC.0000000000000239
  5. Chapinal N, 2011, J DAIRY SCI, V94, P4897, DOI 10.3168/jds.2010-4075
  6. Chase C, 2019, VET CLIN N AM-FOOD A, V35, P431, DOI 10.1016/j.cvfa.2019.08.006
  7. DAlotto-Moreno T., 2015, FRONT IMMUNOL C ABST
  8. De Vliegher S, 2012, J DAIRY SCI, V95, P1025, DOI 10.3168/jds.2010-4074
  9. Druker SA, 2022, J DAIRY SCI, V105, P665, DOI 10.3168/jds.2020-20064
  10. Eckersall PD, 2010, VET J, V185, P23, DOI 10.1016/j.tvjl.2010.04.009
  11. Enninga EAL, 2018, AM J REPROD IMMUNOL, V79, DOI 10.1111/aji.12795
  12. Esposito G, 2014, ANIM REPROD SCI, V144, P60, DOI 10.1016/j.anireprosci.2013.11.007
  13. Goto S, 2017, IMMUN INFLAMM DIS, V5, P355, DOI 10.1002/iid3.173
  14. Hansen PJ, 2013, J ANIM SCI, V91, P1639, DOI 10.2527/jas.2012-5934
  15. Horadagoda NU, 1999, VET REC, V144, P437, DOI 10.1136/vr.144.16.437
  16. Ikebuchi R, 2013, VET RES, V44, DOI 10.1186/1297-9716-44-59
  17. Kasimanickam R, 2004, THERIOGENOLOGY, V62, P9, DOI 10.1016/j.theriogenology.2003.03.001
  18. Kim IH, 2014, THERIOGENOLOGY, V82, P427, DOI 10.1016/j.theriogenology.2014.04.022
  19. Konnai S, 2017, J VET MED SCI, V79, P1, DOI 10.1292/jvms.16-0354
  20. Lacasse P, 2018, RES VET SCI, V116, P40, DOI 10.1016/j.rvsc.2017.06.020
  21. Leblanc S, 2010, J REPROD DEVELOP, V56, pS29, DOI 10.1262/jrd.1056S29
  22. MAKIMURA S, 1982, JPN J VET SCI, V44, P15, DOI 10.1292/jvms1939.44.15
  23. Martins T. M., 2014, Revista Brasileira de Reproducao Animal, V38, P214
  24. Meggyes M, 2019, BMC PREGNANCY CHILDB, V19, DOI 10.1186/s12884-019-2218-6
  25. Della Libera AMMP, 2015, VET RES, V46, DOI 10.1186/s13567-014-0125-4
  26. Mezzetti M., 2021, DAIRY, V2, P617, DOI [10.3390/dairy2040048, DOI 10.3390/DAIRY2040048]
  27. Miko E, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00846
  28. Moura A. R. F., 2012, Archives of Veterinary Science, V17, P32
  29. Okagawa T, 2018, VET RES, V49, DOI 10.1186/s13567-018-0543-9
  30. Okagawa T, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00650
  31. Ospina PA, 2010, J DAIRY SCI, V93, P3595, DOI 10.3168/jds.2010-3074
  32. Piccinni MP, 1998, NAT MED, V4, P1020, DOI 10.1038/2006
  33. R Core Team, 2019, R LANGUAGE STAT COMP, DOI 11/44679/INDEX.HTM
  34. Roberts T, 2012, J DAIRY SCI, V95, P3057, DOI 10.3168/jds.2011-4937
  35. Robinson D, 2021, BROOM CONVERT STAT O
  36. Santos KR, 2018, ARQ BRAS MED VET ZOO, V70, P1120, DOI 10.1590/1678-4162-10069
  37. Schmitt R, 2021, J DAIRY RES, V88, P33, DOI 10.1017/S0022029921000078
  38. Sheldon IM, 2020, THERIOGENOLOGY, V150, P158, DOI 10.1016/j.theriogenology.2020.01.017
  39. Sheldon IM, 2009, BIOL REPROD, V81, P1025, DOI 10.1095/biolreprod.109.077370
  40. Sheldon IM., 2006, PARTNERS REPROD, V2, P1
  41. Tian M, 2016, SCI REP-UK, V6, DOI 10.1038/srep27683
  42. Wang SC, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-018-1251-0
  43. Watari K, 2019, BMC VET RES, V15, DOI 10.1186/s12917-019-2082-7
  44. Wathes DC, 2013, REPROD FERT DEVELOP, V25, P48, DOI 10.1071/RD12272
  45. Wickham H., 2019, J OPEN SOURCE SOFTW, V4, P1686, DOI [10.21105/joss.01686, DOI 10.21105/JOSS.01686]
  46. Wykes MN, 2018, NAT REV IMMUNOL, V18, P91, DOI 10.1038/nri.2017.112