Rapid profiling of <i>Plasmodium</i> parasites from genome sequences to assist malaria control

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
PHELAN, Jody E.
TURKIEWICZ, Anna
MANKO, Emilia
THORPE, Joseph
VANHEER, Leen N.
VEGTE-BOLMER, Marga van de
NGOC, Nguyen Thi Hong
BINH, Nguyen Thi Huong
THIEU, Nguyen Quang
GITAKA, Jesse
Citação
GENOME MEDICINE, v.15, n.1, article ID 96, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling of co-infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rapidly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly from WGS data. Results The online and command line versions of Malaria-Profiler detect similar to 250 markers from genome sequences covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine-pyrimethamine (SP), and other anti-malarial drugs for P. falciparum, but also providing mutations for orthologous resistance genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical isolates with WGS and geographical data, with most being single-species infections (P. falciparum 7152/7462, P. vivax 1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co-infections were identified (456/9321; 4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels (94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), sulfadoxine (83.3%; 35.4- 90.5%), pyrimethamine (85.4%; 80.0-100%) and combined SP (77.4%). Markers associated with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%). Conclusions Malaria-Profiler is a user-friendly tool that can rapidly and accurately predict the geographical regional source and anti-malarial drug resistance profiles across large numbers of samples with WGS data. The software is flexible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display specific variants, and customise the format of outputs. With the increasing application of next-generation sequencing platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point-of-care and surveillance settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria-profiler) and as standalone software (https://github.com/jodyphelan/malaria-profiler).
Palavras-chave
Drug resistance, Malaria, Plasmodium parasites, Genomics, Diagnostics, Whole genome sequencing
Referências
  1. Acford-Palmer H, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-32336-7
  2. Ariey F, 2014, NATURE, V505, P50, DOI 10.1038/nature12876
  3. Balikagala B, 2021, NEW ENGL J MED, V385, P1163, DOI 10.1056/NEJMoa2101746
  4. Benavente ED, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-46398-z
  5. Benavente ED, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-23422-3
  6. Benavente ED, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177134
  7. Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170
  8. Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334
  9. Cingolani P, 2012, FLY, V6, P80, DOI 10.4161/fly.19695
  10. Collins EL, 2022, PLOS NEGLECT TROP D, V16, DOI 10.1371/journal.pntd.0010935
  11. Conrad MD, 2023, NEW ENGL J MED, V389, P722, DOI 10.1056/NEJMoa2211803
  12. Cowell AN, 2017, MBIO, V8, DOI [10.1128/mBio.02257-16, 10.1128/mbio.02257-16]
  13. Deelder W, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-25568-6
  14. Deelder W, 2021, MALARIA J, V20, DOI 10.1186/s12936-021-03788-x
  15. Benavente ED, 2020, PLOS GENET, V16, DOI 10.1371/journal.pgen.1008576
  16. Djimdé A, 2001, NEW ENGL J MED, V344, P257, DOI 10.1056/NEJM200101253440403
  17. Edgar RC, 2004, BMC BIOINFORMATICS, V5, P1, DOI 10.1186/1471-2105-5-113
  18. Fuehrer HP, 2022, MALARIA J, V21, DOI 10.1186/s12936-022-04151-4
  19. Garrison E., 2012, Haplotype-based variant detection from short-read sequencing, V1207, P3907
  20. Grignard L, 2020, EBIOMEDICINE, V55, DOI 10.1016/j.ebiom.2020.102757
  21. Grüning B, 2018, NAT METHODS, V15, P475, DOI 10.1038/s41592-018-0046-7
  22. He Y, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0213686
  23. Ibrahim A, 2023, LANCET REG HEALTH-AM, V18, DOI 10.1016/j.lana.2022.100420
  24. Ibrahim A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-67568-4
  25. Kim D, 2016, GENOME RES, V26, P1721, DOI 10.1101/gr.210641.116
  26. Kokot M, 2017, BIOINFORMATICS, V33, P2759, DOI 10.1093/bioinformatics/btx304
  27. Kumar S, 2018, MOL BIOL EVOL, V35, P1547, DOI 10.1093/molbev/msy096
  28. Li H, 2018, BIOINFORMATICS, V34, P3094, DOI 10.1093/bioinformatics/bty191
  29. Li H, 2010, BIOINFORMATICS, V26, P589, DOI 10.1093/bioinformatics/btp698
  30. Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352
  31. MalariaGEN, 2022, Wellcome Open Res, V7, P136, DOI 10.12688/wellcomeopenres.17795.1
  32. MalariaGEN, 2021, Wellcome Open Res, V6, P42, DOI [10.12688/wellcomeopenres.16168.2, 10.12688/wellcomeopenres.16168.1]
  33. Mohring F., 2020, Bio Protoc, V10, P3522
  34. Moon RW, 2016, P NATL ACAD SCI USA, V113, P7231, DOI 10.1073/pnas.1522469113
  35. Napier G, 2020, GENOME MED, V12, DOI 10.1186/s13073-020-00817-3
  36. Ocholla H, 2014, J INFECT DIS, V210, P1991, DOI 10.1093/infdis/jiu349
  37. Osborne A, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-39233-z
  38. Osborne A, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-99192-1
  39. Phelan JE, 2019, GENOME MED, V11, DOI 10.1186/s13073-019-0650-x
  40. Poplin R, 2019, Pac Symp Biocomput, V24, P224
  41. Preston MD, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5052
  42. Ravenhall M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44599-0
  43. Ravenhall M, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1634-6
  44. Samad H, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005131
  45. Sepulveda N, 2018, INFECT GENET EVOL, V62, P211, DOI 10.1016/j.meegid.2018.04.039
  46. Tange O., 2018, GNU Parallel, DOI [10.5281/ZENODO.1146014, DOI 10.5281/ZENODO.1146014]
  47. Turkiewicz A, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-29368-4
  48. Turkiewicz A, 2020, PLOS GENET, V16, DOI 10.1371/journal.pgen.1009268
  49. van de Vegte-bolmer M, 2021, MALARIA J, V20, DOI 10.1186/s12936-021-03912-x
  50. WHO, 2022, World Malaria Report: 2021
  51. World Health Organization, 2023, Consolidated Guidelines for malaria