Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
52
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Citação
DIABETOLOGY & METABOLIC SYNDROME, v.6, article ID 47, 8p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The inappropriate secretion of adipocytokines plays a critical role in chronic inflammatory states associated with obesity-linked type 2 diabetes and atherosclerosis. The pleiotropic actions of simvastatin and pioglitazone on epicardial adipose tissue (EAT) are unknown. This study assessed the anti-inflammatory actions of simvastatin and pioglitazone on EAT in patients with coronary artery disease (CAD) and metabolic syndrome (MS). Methods: A total of 73 patients with multivessel CAD who underwent elective bypass grafting were non-randomly allocated to one of four subgroups: Control (n = 17), simvastatin (20 mg/day, n = 20), pioglitazone (15 mg or 30 mg/day, n = 18), or simvastatin + pioglitazone (20 mg/day + 30 mg/day, respectively, n = 18); 20 valvar patients were also included. EAT samples were obtained during surgery. The infiltration of macrophages and lymphocytes and cytokines secretion were investigated using immunohistochemical staining and compared to plasma inflammatory biomarkers. Results: Simvastatin significantly reduced plasma interleukin-6, leptin, resistin and monocyte chemoattractant protein-1 (p < 0.001 for all); pioglitazone reduced interleukin-6, tumoral necrose factor-alpha, resistin and matrix metalloproteinase-9 (p < 0.001 for all). Simvastatin + pioglitazone treatment further reduced plasmatic variables, including interleukin-6, tumoral necrose factor-alpha, resistin, asymmetric dimethylarginine and metalloproteinase-9 vs. the control group (p < 0.001). Higher plasma adiponectin and lower high sensitivity C-reactive protein concentrations were found simultaneously in the combined treatment group. A positive correlation between the mean percentage systemic and tissue cytokines was observed after treatments. T-and B-lymphocytes and macrophages clusters were observed in the fat fragments of patients treated with simvastatin for the first time. Conclusions: Pioglitazone, simvastatin or combination treatment substantially reduced EAT and plasma inflammatory markers in CAD and MS patients. These tissue effects may contribute to the control of coronary atherosclerosis progression.
Palavras-chave
Atherosclerosis, Epicardial adipose tissue, Inflammation, Pioglitazone, Simvastatin
Referências
  1. Baker AR, 2006, CARDIOVASC DIABETOL, V5, DOI 10.1186/1475-2840-5-1
  2. Drayton DL, 2006, NAT IMMUNOL, V7, P344, DOI 10.1038/ni1330
  3. Fain JN, 2000, METABOLISM, V49, P1485, DOI 10.1053/meta.2000.17675
  4. Forst T, 2008, ATHEROSCLEROSIS, V197, P311, DOI 10.1016/j.atherosclerosis.2007.05.006
  5. Grundy SM, 2004, CIRCULATION, V110, P227, DOI 10.1161/01.CIR.0000133317.49796.0E
  6. Haffner SM, 2006, J AM COLL CARDIOL, V97, p3A
  7. Hanefeld M, 2007, J AM COLL CARDIOL, V49, P290, DOI 10.1016/j.jacc.2006.08.054
  8. Hanley AJG, 2005, CIRCULATION, V112, P3713, DOI 10.1161/CIRCULATIONAHA.105.559633
  9. Hirata Y, 2011, INT HEART J, V52, P139
  10. Hug C, 2005, CURR OPIN PHARMACOL, V5, P129, DOI 10.1016/j.coph.2005.01.001
  11. Iacobellis G, 2003, J CLIN ENDOCR METAB, V88, P5163, DOI 10.1210/jc.2003-030698
  12. Iacobellis G, 2005, CYTOKINE, V29, P251, DOI 10.1016/j.cyto.2004.11.002
  13. Iacobellis G, 2005, NAT CLIN PRACT CARD, V2, P536, DOI 10.1038/ncpcardio0319
  14. Iacobellis G, 2010, INT J CARDIOL, V144, P160, DOI 10.1016/j.ijcard.2008.12.155
  15. Iacobellis G, 2009, HORM METAB RES, V41, P227, DOI 10.1055/s-0028-1100412
  16. Iacobellis G, 2003, OBES RES, V11, P304, DOI 10.1038/oby.2003.45
  17. Jialal I, 2001, CIRCULATION, V103, P1933
  18. Kershaw EE, 2004, J CLIN ENDOCR METAB, V89, P2548, DOI 10.1210/jc.2004-0395
  19. Khan M, 2006, DIABETES OBES METAB, V8, P31, DOI 10.1111/j.1463-1326.2005.00489.x
  20. Lotzer K, 2010, ARTERIOSCL THROM VAS, V30, P395, DOI 10.1161/ATVBAHA.109.191395
  21. Luz P L da, 2011, Braz J Med Biol Res, V44, P973
  22. Mazurek T, 2003, CIRCULATION, V108, P2460, DOI 10.1161/01.CIR.0000099542.57313.C5
  23. Meier D, 2007, IMMUNITY, V26, P643, DOI 10.1016/j.immuni.2007.04.009
  24. Miyazaki Y, 2004, J CLIN ENDOCR METAB, V89, P4312, DOI 10.1210/jc.2004-0190
  25. Montani JP, 2004, INT J OBESITY, V28, pS58, DOI 10.1038/sj.ijo.0802858
  26. Moreno PR, 2000, CIRCULATION, V102, P2180
  27. Ouchi N, 2003, CIRCULATION, V107, P671, DOI 10.1161/01.CIR.0000055188.83694.B3
  28. Permana PA, 2006, BIOCHEM BIOPH RES CO, V341, P507, DOI 10.1016/j.bbrc.2006.01.012
  29. Permana PA, 2009, AM J PHYSIOL-ENDOC M, V296, pE1076, DOI 10.1152/ajpendo.91013.2008
  30. Pfutzner A, 2005, J AM COLL CARDIOL, V45, P1925, DOI 10.1016/j.jacc.2005.03.041
  31. Phillips SA, 2008, AM J PHYSIOL-ENDOC M, V295, pE842, DOI 10.1152/ajpendo.90359.2008
  32. Rasouli N, 2006, AM J PHYSIOL-ENDOC M, V290, pE42, DOI 10.1152/ajpendo.00240.2005
  33. Sacks HS, 2011, DIABETES CARE, V34, P730, DOI 10.2337/dc10-2083
  34. Shoelson SE, 2006, J CLIN INVEST, V116, P1793, DOI 10.1172/JCI29069
  35. Suganami T, 2010, J LEUKOCYTE BIOL, V88, P33, DOI 10.1189/jlb.0210072
  36. Teijeira-Fernandez E, 2011, CYTOKINE, V54, P185, DOI 10.1016/j.cyto.2011.01.016
  37. Walcher Daniel, 2004, Diab Vasc Dis Res, V1, P76, DOI 10.3132/dvdr.2004.011
  38. Zhou AQ, 2011, J MAGN RESON IMAGING, V34, P1452, DOI 10.1002/jmri.22824