Robotic-Assisted Stereoelectroencephalography: A Systematic Review and Meta-Analysis of Safety, Outcomes, and Precision in Refractory Epilepsy Patients

Nenhuma Miniatura disponível
Citações na Scopus
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Autores
VASCONCELLOS, Fernando De Nigris
ALMEIDA, Timoteo
FIEDLER, Augusto Muller
FOUNTAIN, Hayes
PIEDADE, Guilherme Santos
JAGID, Jonathan
CORDEIRO, Joacir G.
Citação
CUREUS JOURNAL OF MEDICAL SCIENCE, v.15, n.10, article ID e47675, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Robotic assistance in stereoelectroencephalography (SEEG) holds promising potential for enhancing accuracy, efficiency, and safety during electrode placement and surgical procedures. This systematic review and meta-analysis, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and International Prospective Register of Systematic Reviews (PROSPERO) registration, delves into the latest advancements and implications of robotic systems in SEEG, while meticulously evaluating outcomes and safety measures. Among 855 patients suffering from medicationrefractory epilepsy who underwent SEEG in 29 studies, averaging 24.6 years in age, the most prevalent robots employed were robotic surgical assistant (ROSA) (450 patients), Neuromate (207), Sinovation (140), and ISys1 (58). A total of 8,184 electrodes were successfully implanted, with an average operative time of 157.2 minutes per procedure and 15.1 minutes per electrode, resulting in an overall mean operative time of 157.7 minutes across all studies. Notably, the mean target point error (TPE) stood at 2.13 mm, the mean entry point error (EPE) at 1.48 mm, and postoperative complications occurred in 7.69% of robotically assisted (RA) SEEG cases (60), with 85% of these complications being asymptomatic. This comprehensive analysis underscores the safety and efficacy of RA-SEEG in patients with medication-refractory epilepsy, characterized by low complication rates, reduced operative time, and precise electrode placement, supporting its widespread adoption in clinical practice, with no discernible differences noted among the various robotic systems.
Palavras-chave
drug-resistant epilepsy, operative time, accuracy, robot-assisted, stereoelectroencephalography (seeg)
Referências
  1. Abel TJ, 2018, J NEUROSURG-PEDIATR, V22, P37, DOI 10.3171/2018.1.PEDS17435
  2. Abhinav K, 2013, BRIT J NEUROSURG, V27, P704, DOI 10.3109/02688697.2013.798859
  3. Alomar S, 2016, NEUROSURG CLIN N AM, V27, P83, DOI 10.1016/j.nec.2015.08.003
  4. Bonda DJ, 2021, CHILD NERV SYST, V37, P2251, DOI 10.1007/s00381-021-05107-w
  5. Bottan JS, 2020, OPER NEUROSURG, V18, P278, DOI 10.1093/ons/opz154
  6. Bourdillon P, 2019, J NEUROSURG, V131, P1938, DOI 10.3171/2018.7.JNS181164
  7. Candela-Cantó S, 2018, ACTA NEUROCHIR, V160, P2489, DOI 10.1007/s00701-018-3720-8
  8. Cardinale F, 2016, J CLIN NEUROPHYSIOL, V33, P490, DOI 10.1097/WNP.0000000000000249
  9. Cardinale F, 2015, J NEUROSURG, V122, P475, DOI 10.3171/2014.7.JNS141680
  10. Cardinale F, 2013, NEUROSURGERY, V72, P353, DOI 10.1227/NEU.0b013e31827d1161
  11. Chabardes S, 2018, NEUROSURGERY, V82, pE15, DOI 10.1093/neuros/nyx499
  12. Chaitanya G, 2020, NEUROSURG FOCUS, V48, DOI 10.3171/2020.1.FOCUS19887
  13. Cheng H, 2017, SURG INFECT, V18, P722, DOI 10.1089/sur.2017.089
  14. Cossu M, 2008, NEUROCHIRURGIE, V54, P367, DOI 10.1016/j.neuchi.2008.02.031
  15. De Benedictis A, 2017, NEUROSURG FOCUS, V42, DOI 10.3171/2017.2.FOCUS16579
  16. Devinsky O, 2018, NAT REV DIS PRIMERS, V4, DOI 10.1038/nrdp.2018.24
  17. Dorfer C, 2017, J NEUROSURG, V126, P1622, DOI 10.3171/2016.5.JNS16388
  18. Fiani B, 2021, NEUROL MED-CHIR, V61, P347, DOI 10.2176/nmc.ra.2020-0361
  19. Gomes FC, 2023, NEUROSURG REV, V46, DOI 10.1007/s10143-023-01992-8
  20. González-Martínez J, 2016, NEUROSURGERY, V78, P169, DOI 10.1227/NEU.0000000000001034
  21. Ho AL, 2018, J NEUROSURG-PEDIATR, V22, P489, DOI 10.3171/2018.5.PEDS17718
  22. Ho AL, 2018, NEUROSURG FOCUS, V45, DOI 10.3171/2018.6.FOCUS18226
  23. Iida K, 2017, NEUROL MED-CHIR, V57, P375, DOI 10.2176/nmc.ra.2017-0008
  24. Iordanou JC, 2019, WORLD NEUROSURG, V128, pE322, DOI 10.1016/j.wneu.2019.04.143
  25. Isnard J, 2018, NEUROPHYSIOL CLIN, V48, P5, DOI 10.1016/j.neucli.2017.11.005
  26. Kalbhenn T, 2021, SEIZURE-EUR J EPILEP, V87, P81, DOI 10.1016/j.seizure.2021.03.004
  27. Kandregula S, 2021, WORLD NEUROSURG, V154, pE325, DOI [10.1016/j.wneu.2021.07.048, 10.1016/J.WNEU.2021.07.048]
  28. Kim LH, 2020, EPILEPSY RES, V159, DOI 10.1016/j.eplepsyres.2019.106253
  29. Konrad PE, 2011, STEREOT FUNCT NEUROS, V89, P34, DOI 10.1159/000322276
  30. Liu QQ, 2023, INT J MED ROBOT COMP, V19, DOI 10.1002/rcs.2479
  31. Lu C, 2021, ANN PALLIAT MED, V10, P3699, DOI 10.21037/apm-20-2123
  32. Machetanz K, 2021, J NEUROSURG, V135, P1477, DOI 10.3171/2020.10.JNS201843
  33. Miller BA, 2017, J NEUROSURG-PEDIATR, V20, P364, DOI 10.3171/2017.5.PEDS1782
  34. Minchev G, 2022, J NEUROSURG, V137, P479, DOI 10.3171/2021.9.JNS21794
  35. Minotti L, 2018, NEUROPHYSIOL CLIN, V48, P15, DOI 10.1016/j.neucli.2017.11.006
  36. Mullin JP, 2016, EPILEPSIA, V57, P386, DOI 10.1111/epi.13298
  37. Munari C, 1989, Acta Neurochir Suppl (Wien), V46, P9
  38. Murad MH, 2018, BMJ EVID-BASED MED, V23, P60, DOI 10.1136/bmjebm-2017-110853
  39. Nelson JH, 2020, CHILDREN-BASEL, V7, DOI 10.3390/children7080094
  40. Ollivier I, 2017, NEUROCHIRURGIE, V63, P286, DOI 10.1016/j.neuchi.2017.03.002
  41. Philipp LR, 2021, NEUROSURGERY, V88, P222, DOI 10.1093/neuros/nyaa428
  42. Rosenow F, 2001, BRAIN, V124, P1683, DOI 10.1093/brain/124.9.1683
  43. Spyrantis A, 2019, EPILEPSY BEHAV, V91, P38, DOI 10.1016/j.yebeh.2018.11.002
  44. Spyrantis A, 2018, INT J MED ROBOT COMP, V14, DOI 10.1002/rcs.1888
  45. Tay ASMS, 2022, OPER NEUROSURG, V22, pE150, DOI 10.1227/ONS.0000000000000110
  46. Urgun K, 2021, WORLD NEUROSURG, V145, P210, DOI 10.1016/j.wneu.2020.09.100
  47. Vakharia VN, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-96662-4
  48. Vakharia VN, 2017, EPILEPSIA, V58, P921, DOI 10.1111/epi.13713
  49. Valentini LG, 2008, NEUROSURGERY, V62, P88, DOI 10.1227/01.NEU.0000311065.95496.C5
  50. Wan X, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-135
  51. Yao Y, 2023, J ROBOT SURG, V17, P1013, DOI 10.1007/s11701-022-01504-8
  52. Zhan R, 2014, EUR J CLIN MICROBIOL, V33, P861, DOI 10.1007/s10096-013-2026-2
  53. Zhao R, 2020, WORLD NEUROSURG, V140, pE161, DOI 10.1016/j.wneu.2020.04.218
  54. Zheng J, 2021, NEUROPHYSIOL CLIN, V51, P111, DOI 10.1016/j.neucli.2020.11.001