The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorRODRIGUES, Eder Anderson
dc.contributor.authorROSA, Camila Moreno
dc.contributor.authorCAMPOS, Dijon Henrique Salome
dc.contributor.authorDAMATTO, Felipe Cesar
dc.contributor.authorMURATA, Gilson Masahiro
dc.contributor.authorSOUZA, Lidiane Moreira
dc.contributor.authorPAGAN, Luana Urbano
dc.contributor.authorGATTO, Mariana
dc.contributor.authorBROSLER, Jessica Yumi
dc.contributor.authorSOUZA, Hebreia Oliveira Almeida
dc.contributor.authorMARTINS, Mario Machado
dc.contributor.authorBASTOS, Luciana Machado
dc.contributor.authorTANNI, Suzana Erico
dc.contributor.authorOKOSHI, Katashi
dc.contributor.authorOKOSHI, Marina Politi
dc.date.accessioned2024-02-15T14:39:33Z
dc.date.available2024-02-15T14:39:33Z
dc.date.issued2023
dc.description.abstractBackgroundSodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established.ObjectiveTo evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM.MethodsMale Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. Statistical analysis: ANOVA and Tukey or Kruskal-Wallis and Dunn.ResultsDM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM.ConclusionLong-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.eng
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipThe authors thank the Nanobiotechnology Laboratory, NANOBIO, and Prof. Luiz Ricardo Goulart (<italic>in memoriam</italic>) for collaboration in metabolomics.
dc.identifier.citationDIABETOLOGY & METABOLIC SYNDROME, v.15, n.1, article ID 223, 13p, 2023
dc.identifier.doi10.1186/s13098-023-01196-6
dc.identifier.eissn1758-5996
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/57867
dc.language.isoeng
dc.publisherBMCeng
dc.relation.ispartofDiabetology & Metabolic Syndrome
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright BMCeng
dc.subjectSGLT2 inhibitorseng
dc.subjectStreptozotocineng
dc.subjectPapillary muscleeng
dc.subjectVentricular functioneng
dc.subjectMyocardial metabolomicseng
dc.subjectEchocardiogrameng
dc.subject.otherheart-failureeng
dc.subject.otheroxidative stresseng
dc.subject.othern-acetylcysteineeng
dc.subject.otherfood restrictioneng
dc.subject.othercardiomyopathyeng
dc.subject.otherempagliflozineng
dc.subject.otherdysfunctioneng
dc.subject.othermuscleeng
dc.subject.otherphosphofructokinaseeng
dc.subject.otherdehydrogenaseeng
dc.subject.wosEndocrinology & Metabolismeng
dc.titleThe influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus ratseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalRODRIGUES, Eder Anderson:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalROSA, Camila Moreno:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalCAMPOS, Dijon Henrique Salome:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalDAMATTO, Felipe Cesar:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalSOUZA, Lidiane Moreira:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalPAGAN, Luana Urbano:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalGATTO, Mariana:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalBROSLER, Jessica Yumi:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalSOUZA, Hebreia Oliveira Almeida:Univ Fed Uberlandia, Inst Biotechnol, Lab Nanobiotechnol Prof Dr Luiz Ricardo Goulart, Uberlandia, MG, Brazil
hcfmusp.author.externalMARTINS, Mario Machado:Univ Fed Uberlandia, Inst Biotechnol, Lab Nanobiotechnol Prof Dr Luiz Ricardo Goulart, Uberlandia, MG, Brazil
hcfmusp.author.externalBASTOS, Luciana Machado:Univ Fed Uberlandia, Inst Biotechnol, Lab Nanobiotechnol Prof Dr Luiz Ricardo Goulart, Uberlandia, MG, Brazil
hcfmusp.author.externalTANNI, Suzana Erico:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalOKOSHI, Katashi:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.author.externalOKOSHI, Marina Politi:Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP, Brazil
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcGILSON MASAHIRO MURATA
hcfmusp.description.articlenumber223
hcfmusp.description.issue1
hcfmusp.description.volume15
hcfmusp.origemWOS
hcfmusp.origem.pubmed37908006
hcfmusp.origem.scopus2-s2.0-85175708565
hcfmusp.origem.wosWOS:001090845800001
hcfmusp.publisher.cityLONDONeng
hcfmusp.publisher.countryENGLANDeng
hcfmusp.relation.referenceALP PR, 1976, BIOCHEM J, V154, P689, DOI 10.1042/bj1540689eng
hcfmusp.relation.referenceAnker SD, 2021, NEW ENGL J MED, V385, P1451, DOI 10.1056/NEJMoa2107038eng
hcfmusp.relation.referenceAragón-Herrera A, 2019, BIOCHEM PHARMACOL, V170, DOI 10.1016/j.bcp.2019.113677eng
hcfmusp.relation.referenceBaartscheer A, 2017, DIABETOLOGIA, V60, P568, DOI 10.1007/s00125-016-4134-xeng
hcfmusp.relation.referenceBae JH, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-49525-yeng
hcfmusp.relation.referenceBamba R, 2022, J CACHEXIA SARCOPENI, V13, P574, DOI 10.1002/jcsm.12814eng
hcfmusp.relation.referenceBraunwald E, 2022, NEW ENGL J MED, V386, P2024, DOI 10.1056/NEJMra2115011eng
hcfmusp.relation.referenceBraunwald E, 2022, EUR HEART J, V43, P1029, DOI 10.1093/eurheartj/ehab765eng
hcfmusp.relation.referenceCARDENAS JM, 1973, J BIOL CHEM, V248, P6931eng
hcfmusp.relation.referenceCarpentier AC, 2018, CAN J CARDIOL, V34, P605, DOI 10.1016/j.cjca.2017.12.029eng
hcfmusp.relation.referenceCarvalho RF, 2006, INT J EXP PATHOL, V87, P437, DOI 10.1111/j.1365-2613.2006.00497.xeng
hcfmusp.relation.referenceCezar MDM, 2013, CELL PHYSIOL BIOCHEM, V32, P1275, DOI 10.1159/000354526eng
hcfmusp.relation.referenceCicogna AC, 2000, AM J MED SCI, V320, P244, DOI 10.1097/00000441-200010000-00004eng
hcfmusp.relation.referenceCowie MR, 2020, NAT REV CARDIOL, V17, P761, DOI 10.1038/s41569-020-0406-8eng
hcfmusp.relation.referenceCRABTREE B, 1972, BIOCHEM J, V126, P49, DOI 10.1042/bj1260049eng
hcfmusp.relation.referenceDai C, 2023, ESC HEART FAIL, V10, P578, DOI 10.1002/ehf2.14169eng
hcfmusp.relation.referenceDasari D, 2023, EUR J PHARMACOL, V949, DOI 10.1016/j.ejphar.2023.175720eng
hcfmusp.relation.referenceDillmann WH, 2019, CIRC RES, V124, P1160, DOI 10.1161/CIRCRESAHA.118.314665eng
hcfmusp.relation.referenceEdwards K, 2022, J CLIN ENDOCR METAB, DOI 10.1210/clinem/dgac618eng
hcfmusp.relation.referenceFarias RS, 2023, EUR J PHARMACOL, V942, DOI 10.1016/j.ejphar.2023.175521eng
hcfmusp.relation.referenceGholam MF, 2023, INT J MOL SCI, V24, DOI 10.3390/ijms24021408eng
hcfmusp.relation.referenceGillard P, 2020, DIABETES RES CLIN PR, V170, DOI 10.1016/j.diabres.2020.108462eng
hcfmusp.relation.referenceGimenes C, 2015, J DIABETES RES, V2015, DOI 10.1155/2015/457848eng
hcfmusp.relation.referenceGimenes R, 2018, CARDIOVASC DIABETOL, V17, DOI 10.1186/s12933-017-0657-9eng
hcfmusp.relation.referenceGuimaraes JFC, 2015, CARDIOVASC DIABETOL, V14, DOI 10.1186/s12933-015-0255-7eng
hcfmusp.relation.referenceHamouda NN, 2015, MOL CELL BIOCHEM, V400, P57, DOI 10.1007/s11010-014-2262-5eng
hcfmusp.relation.referenceHeerspink HJL, 2016, CIRCULATION, V134, P752, DOI 10.1161/CIRCULATIONAHA.116.021887eng
hcfmusp.relation.referenceHENGARTNER H, 1975, FEBS LETT, V55, P282, DOI 10.1016/0014-5793(75)81012-Xeng
hcfmusp.relation.referenceHughes MS, 2022, DIABETES OBES METAB, V24, P171, DOI 10.1111/dom.14556eng
hcfmusp.relation.referenceHundertmark MJ, 2023, CIRCULATION, V147, P1654, DOI 10.1161/CIRCULATIONAHA.122.062021eng
hcfmusp.relation.referenceJankauskas SS, 2021, METABOLISM, V125, DOI 10.1016/j.metabol.2021.154910eng
hcfmusp.relation.referenceLiu HY, 2022, CURR DIABETES REP, V22, P317, DOI 10.1007/s11892-022-01471-2eng
hcfmusp.relation.referenceLiu J, 2023, FRONT CARDIOVASC MED, V10, DOI 10.3389/fcvm.2023.1109946eng
hcfmusp.relation.referenceLong JZ, 2016, CELL, V166, P424, DOI 10.1016/j.cell.2016.05.071eng
hcfmusp.relation.referenceMadonna R, 2023, CARDIOVASC RES, V119, P1175, DOI 10.1093/cvr/cvad009eng
hcfmusp.relation.referenceMAKINO N, 1987, AM J PHYSIOL, V253, pE202, DOI 10.1152/ajpendo.1987.253.2.E202eng
hcfmusp.relation.referenceMartinez PF, 2015, CELL PHYSIOL BIOCHEM, V35, P148, DOI 10.1159/000369683eng
hcfmusp.relation.referenceMatsubara LS, 1997, CAN J PHYSIOL PHARM, V75, P1328, DOI 10.1139/cjpp-75-12-1328eng
hcfmusp.relation.referenceMengstie MA, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.947294eng
hcfmusp.relation.referenceMinicucci MF, 2011, INT J CARDIOL, V151, P242, DOI 10.1016/j.ijcard.2011.06.068eng
hcfmusp.relation.referenceNoordali H, 2018, PHARMACOL THERAPEUT, V182, P95, DOI 10.1016/j.pharmthera.2017.08.001eng
hcfmusp.relation.referenceOkoshi K, 2019, BMC CARDIOVASC DISOR, V19, DOI 10.1186/s12872-019-1113-4eng
hcfmusp.relation.referenceOkoshi K, 2004, JPN HEART J, V45, P647, DOI 10.1536/jhj.45.647eng
hcfmusp.relation.referenceOkoshi MP, 2001, CAN J PHYSIOL PHARM, V79, P754, DOI 10.1139/cjpp-79-9-754eng
hcfmusp.relation.referencePagan LU, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11020336eng
hcfmusp.relation.referencePagan LU, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.675778eng
hcfmusp.relation.referencePhang RJ, 2023, CARDIOVASC RES, V119, P668, DOI 10.1093/cvr/cvac049eng
hcfmusp.relation.referencePrandi FR, 2023, HEART FAIL REV, V28, P597, DOI 10.1007/s10741-021-10200-yeng
hcfmusp.relation.referenceRao LW, 2021, ACTA DIABETOL, V58, P869, DOI 10.1007/s00592-021-01686-xeng
hcfmusp.relation.referenceReyes DRA, 2019, J CELL MOL MED, V23, P1235, DOI 10.1111/jcmm.14025eng
hcfmusp.relation.referenceReyes DRA, 2017, CELL PHYSIOL BIOCHEM, V44, P2310, DOI 10.1159/000486115eng
hcfmusp.relation.referenceRodrigues EA, 2023, ANTIOXIDANTS-BASEL, V12, DOI 10.3390/antiox12040896eng
hcfmusp.relation.referenceRosa CM, 2016, CARDIOVASC DIABETOL, V15, DOI 10.1186/s12933-016-0442-1eng
hcfmusp.relation.referenceRosa CM, 2022, ANTIOXIDANTS-BASEL, V11, DOI 10.3390/antiox11050982eng
hcfmusp.relation.referenceSalah HM, 2022, J CARDIOVASC TRANSL, V15, P944, DOI 10.1007/s12265-022-10220-5eng
hcfmusp.relation.referenceSalvatore T, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9101356eng
hcfmusp.relation.referenceSantos-Gallego CG, 2019, J AM COLL CARDIOL, V73, P1931, DOI 10.1016/j.jacc.2019.01.056eng
hcfmusp.relation.referenceSanz RL, 2023, CURR HYPERTENS REP, V25, P91, DOI 10.1007/s11906-023-01240-weng
hcfmusp.relation.referenceSeufert J, 2022, DIABETES OBES METAB, V24, P742, DOI 10.1111/dom.14620eng
hcfmusp.relation.referenceSolomon SD, 2022, NEW ENGL J MED, DOI 10.1056/NEJMoa2206286eng
hcfmusp.relation.referenceSowton AP, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00639eng
hcfmusp.relation.referenceSugizaki M, 2005, J BIOMED SCI, V12, P641, DOI 10.1007/s11373-005-7652-yeng
hcfmusp.relation.referenceTsao CW, 2023, CIRCULATION, V147, pE93, DOI 10.1161/CIR.0000000000001123eng
hcfmusp.relation.referenceUthman L, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01575eng
hcfmusp.relation.referenceVerma S, 2018, DIABETOLOGIA, V61, P2108, DOI 10.1007/s00125-018-4670-7eng
hcfmusp.relation.referenceWang CC, 2022, J DRUG TARGET, V30, P858, DOI 10.1080/1061186X.2022.2064479eng
hcfmusp.relation.referenceWiviott SD, 2019, NEW ENGL J MED, V380, P347, DOI [10.1056/NEJMoa1812389, 10.1056/NEJMc1902837]eng
hcfmusp.relation.referenceYurista SR, 2019, EUR J HEART FAIL, V21, P862, DOI 10.1002/ejhf.1473eng
hcfmusp.relation.referenceZhang YZ, 2021, CARDIOVASC DIABETOL, V20, DOI 10.1186/s12933-021-01312-8eng
hcfmusp.relation.referenceZinman B, 2016, NEW ENGL J MED, V374, P1094, DOI 10.1056/NEJMc1600827eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication55d2b9de-aad9-46f5-ae81-7d6247bcaafb
relation.isAuthorOfPublication.latestForDiscovery55d2b9de-aad9-46f5-ae81-7d6247bcaafb
Arquivos