Complex Network-Driven View of Genomic Mechanisms Underlying Parkinson's Disease: Analyses in Dorsal Motor Vagal Nucleus, Locus Coeruleus, and Substantia Nigra

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI PUBLISHING CORPORATION
Citação
BIOMED RESEARCH INTERNATIONAL, article ID 543673, 16p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Parkinson's disease (PD)-classically characterized by severe loss of dopaminergic neurons in the substantia nigra pars compactahas a caudal-rostral progression, beginning in the dorsal motor vagal nucleus and, in a less extent, in the olfactory system, progressing to the midbrain and eventually to the basal forebrain and the neocortex. About 90% of the cases are idiopathic. To study the molecular mechanisms involved in idiopathic PD we conducted a comparative study of transcriptional interaction networks in the dorsal motor vagal nucleus (VA), locus coeruleus (LC), and substantia nigra (SN) of idiopathic PD in Braak stages 4-5 (PD) and disease-free controls (CT) using postmortem samples. Gene coexpression networks (GCNs) for each brain region (patients and controls) were obtained to identify highly connected relevant genes (hubs) and densely interconnected gene sets (modules). GCN analyses showed differences in topology and module composition between CT and PD networks for each anatomic region. In CT networks, VA, LC, and SN hub modules are predominantly associated with neuroprotection and homeostasis in the ageing brain, whereas in the patient's group, for the three brain regions, hub modules are mostly related to stress response and neuron survival/degeneration mechanisms.
Palavras-chave
Referências
  1. Adibhatla RM, 2008, BMB REP, V41, P560
  2. Andreu-Agullo C, 2012, NATURE, V481, P195, DOI 10.1038/nature10712
  3. Arvanitis CD, 2011, ULTRASOUND MED BIOL, V37, P1838, DOI 10.1016/j.ultrasmedbio.2011.08.004
  4. Bajo-Graneras R, 2011, GLIA, V59, P1551, DOI 10.1002/glia.21200
  5. Bajo-Graneras R, 2011, J NEUROCHEM, V117, P949, DOI 10.1111/j.1471-4159.2011.07266.x
  6. Bando SY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079913
  7. Barabasi AL, 2011, NAT REV GENET, V12, P56, DOI 10.1038/nrg2918
  8. Binda O, 2008, ONCOGENE, V27, P3384, DOI 10.1038/sj.onc.1211014
  9. Bonasio R, 2010, SEMIN CELL DEV BIOL, V21, P221, DOI 10.1016/j.semcdb.2009.09.010
  10. Bonifati Vincenzo, 2014, Parkinsonism Relat Disord, V20 Suppl 1, pS23, DOI 10.1016/S1353-8020(13)70009-9
  11. Braak H, 2003, NEUROBIOL AGING, V24, P197, DOI 10.1016/S0197-4580(02)00065-9
  12. Braak H, 2003, J NEURAL TRANSM, V110, P517, DOI 10.1007/s00702-002-0808-2
  13. Cai JJ, 2010, GENOME BIOL EVOL, V2, P815, DOI 10.1093/gbe/evq064
  14. Capsoni S, 2013, BIOCHEM BIOPH RES CO, V431, P579, DOI 10.1016/j.bbrc.2013.01.007
  15. Chao YX, 2009, J NEUROIMMUNOL, V216, P39, DOI 10.1016/j.jneuroim.2009.09.003
  16. Chaussabel D, 2014, NAT REV IMMUNOL, V14, P271, DOI 10.1038/nri3642
  17. Chavali S, 2010, BMC SYST BIOL, V4, DOI 10.1186/1752-0509-4-78
  18. Chung Hyung-Joo, 2014, Korean J Anesthesiol, V66, P230, DOI 10.4097/kjae.2014.66.3.230
  19. Corrente G, 2002, NEUROREPORT, V13, P417, DOI 10.1097/00001756-200203250-00011
  20. Corti O, 2011, PHYSIOL REV, V91, P1161, DOI 10.1152/physrev.00022.2010
  21. Dahiya A, 2001, MOL CELL, V8, P557, DOI 10.1016/S1097-2765(01)00346-X
  22. Dmytriyeva O, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2202
  23. Domenger D, 2012, EXP NEUROL, V233, P513, DOI 10.1016/j.expneurol.2011.11.031
  24. Dugas JC, 2006, J NEUROSCI, V26, P10967, DOI 10.1523/JNEUROSCI.2572-06.2006
  25. Dunning CJR, 2012, PROG NEUROBIOL, V97, P205, DOI 10.1016/j.pneurobio.2011.11.003
  26. Edwards YJK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016917
  27. Engel T, 2013, BRAIN, V136, P577, DOI 10.1093/brain/aws337
  28. Eryilmaz J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007274
  29. Eshed Y, 2005, NEURON, V47, P215, DOI 10.1016/j.neuron.2005.06.026
  30. Ezzeddine N, 2012, MOL CELL BIOL, V32, P1089, DOI 10.1128/MCB.06370-11
  31. Feinberg K, 2010, NEURON, V65, P490, DOI 10.1016/j.neuron.2010.02.004
  32. Fenner ME, 2014, J MOL HISTOL, V45, P349, DOI 10.1007/s10735-013-9562-z
  33. Ferrer I, 2011, J NEURAL TRANSM, V118, P821, DOI 10.1007/s00702-010-0482-8
  34. Gaiteri C, 2014, GENES BRAIN BEHAV, V13, P13, DOI 10.1111/gbb.12106
  35. Goldenberg-Cohen N, 2012, APOPTOSIS, V17, P278, DOI 10.1007/s10495-011-0678-x
  36. Gotoh A, 2013, J BIOL CHEM, V288, P34699, DOI 10.1074/jbc.M113.513119
  37. Greene JG, 2012, NEUROBIOL DIS, V45, P76, DOI 10.1016/j.nbd.2010.10.022
  38. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  39. Guadiana SM, 2013, J NEUROSCI, V33, P2626, DOI 10.1523/JNEUROSCI.2906-12.2013
  40. Hansen C, 2012, TRENDS MOL MED, V18, P248, DOI 10.1016/j.molmed.2012.03.002
  41. Hao HX, 2012, NATURE, V485, P195, DOI 10.1038/nature11019
  42. Harrison IF, 2013, PHARMACOL THERAPEUT, V140, P34, DOI 10.1016/j.pharmthera.2013.05.010
  43. Harrison PJ, 2008, J PSYCHOPHARMACOL, V22, P308, DOI 10.1177/0269881108089818
  44. Herskovits AZ, 2014, NEURON, V81, P471, DOI 10.1016/j.neuron.2014.01.028
  45. Hoglinger GU, 2007, P NATL ACAD SCI USA, V104, P3585, DOI 10.1073/pnas.0611671104
  46. Holm PC, 2006, J NEUROCHEM, V99, P343, DOI 10.1111/j.1471-4159.2006.04039.x
  47. Hornig J, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003907
  48. Huang BT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037702
  49. Ideker T, 2012, MOL SYST BIOL, V8, DOI 10.1038/msb.2011.99
  50. Ikeda F, 2011, NATURE, V471, P637, DOI 10.1038/nature09814
  51. Inoue KI, 2008, NEURAL DEV, V3, DOI 10.1186/1749-8104-3-20
  52. Jansen P, 2007, NAT NEUROSCI, V10, P1449, DOI 10.1038/nn2000
  53. Jantas D, 2014, NEUROPHARMACOLOGY, V83, P36, DOI 10.1016/j.neuropharm.2014.03.019
  54. Joshi MA, 2006, BIOCHEM J, V400, P153, DOI 10.1042/BJ20060869
  55. Katahira J, 2008, NUCLEIC ACIDS RES, V36, P616, DOI 10.1093/nar/gkm556
  56. Khaindrava VG, 2011, B EXP BIOL MED+, V150, P566
  57. Kingsbury AE, 2010, MOVEMENT DISORD, V25, P2508, DOI 10.1002/mds.23305
  58. Konopka G, 2011, WIRES SYST BIOL MED, V3, P628, DOI 10.1002/wsbm.139
  59. Korhonen P, 1998, BIOCHEM BIOPH RES CO, V252, P274, DOI 10.1006/bbrc.1998.9629
  60. Krebs P, 2011, P NATL ACAD SCI USA, V108, P19678, DOI 10.1073/pnas.1117835108
  61. Krumova P, 2011, J CELL BIOL, V194, P49, DOI 10.1083/jcb.201010117
  62. Kumamoto N, 2012, NAT NEUROSCI, V15, P399, DOI 10.1038/nn.3042
  63. Kurabayashi N, 2013, DEVELOPMENT, V140, P4335, DOI 10.1242/dev.099754
  64. L'Episcopo F, 2014, J MOL CELL BIOL, V6, P13, DOI 10.1093/jmcb/mjt053
  65. Lewis PA, 2012, BRAIN RES BULL, V88, P302, DOI 10.1016/j.brainresbull.2011.11.016
  66. Li Z, 2006, J MOL BIOL, V364, P1073, DOI 10.1016/j.jmb.2006.10.002
  67. Louvi A, 2011, NEURON, V69, P1046, DOI 10.1016/j.neuron.2011.03.002
  68. Luissint Anny-Claude, 2012, Fluids Barriers CNS, V9, P23, DOI 10.1186/2045-8118-9-23
  69. Ma FR, 2001, P NATL ACAD SCI USA, V98, P9778, DOI 10.1073/pnas.171322898
  70. Manzardo AM, 2013, GENE, V526, P356, DOI 10.1016/j.gene.2013.05.052
  71. Marei HES, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028420
  72. Marques O, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.94
  73. Marquez CP, 2010, GENETICS, V185, P1507, DOI 10.1534/genetics.110.116673
  74. McKinsey GL, 2013, NEURON, V77, P83, DOI 10.1016/j.neuron.2012.11.035
  75. McLennan AG, 2006, CELL MOL LIFE SCI, V63, P123, DOI 10.1007/s00018-005-5386-7
  76. Meng L, 2011, ONCOGENE, V30, P1716, DOI 10.1038/onc.2010.550
  77. Moldovan M, 2013, MOL MED, V19, P43, DOI 10.2119/molmed.2012.00248
  78. Mounce J, 2014, SCHIZOPHR RES, V155, P8, DOI 10.1016/j.schres.2014.03.003
  79. Mudo G, 2012, CELL MOL LIFE SCI, V69, P1153, DOI 10.1007/s00018-011-0850-z
  80. Muller MS, 2014, GLIA, V62, P526, DOI 10.1002/glia.22623
  81. Nakayama T, 1999, J NEUROCHEM, V72, P373, DOI 10.1046/j.1471-4159.1999.0720373.x
  82. Nandhagopal R, 2011, BRAIN, V134, P3290, DOI 10.1093/brain/awr233
  83. Newman M. E. J., 2010, NETWORKS INTRO
  84. Nisancioglu MH, 2008, MOL CELL BIOL, V28, P2324, DOI 10.1128/MCB.01252-07
  85. Nykjaer A, 2012, TRENDS NEUROSCI, V35, P261, DOI 10.1016/j.tins.2012.01.003
  86. Obeso JA, 2010, NAT MED, V16, P653, DOI 10.1038/nm.2165
  87. Opitz L, 2010, BMC MED GENOMICS, V3, DOI 10.1186/1755-8794-3-36
  88. Palanca A, 2014, BBA-MOL BASIS DIS, V1842, P848, DOI 10.1016/j.bbadis.2013.11.016
  89. Papalas JA, 2009, AM J DERMATOPATH, V31, P379, DOI 10.1097/DAD.0b013e3181966747
  90. Parkkinen L, 2008, ACTA NEUROPATHOL, V115, P399, DOI 10.1007/s00401-008-0346-6
  91. Paula-Lima AC, 2009, INT J BIOCHEM CELL B, V41, P1361, DOI 10.1016/j.biocel.2008.12.003
  92. Pelisch F, 2010, P NATL ACAD SCI USA, V107, P16119, DOI 10.1073/pnas.1004653107
  93. Perea R. D., 2014, J ALZHEIMERS DIS PAR, V3
  94. Perrone GG, 2005, MOL BIOL CELL, V16, P218, DOI 10.1091/mbc.E04-07-0560
  95. Purro SA, 2014, J MOL CELL BIOL, V6, P75, DOI 10.1093/jmcb/mjt049
  96. Ramaswami M, 2013, CELL, V154, P727, DOI 10.1016/j.cell.2013.07.038
  97. Rogowski K, 2010, CELL, V143, P564, DOI 10.1016/j.cell.2010.10.014
  98. Rosello A, 2012, CLIN EXP IMMUNOL, V168, P52, DOI 10.1111/j.1365-2249.2011.04544.x
  99. Rybnikova E, 2012, NEUROSCI RES, V72, P364, DOI 10.1016/j.neures.2011.12.010
  100. Sampaio-Marques B, 2012, AUTOPHAGY, V8, P1494, DOI 10.4161/auto.21275
  101. Schapira AH, 2011, MOVEMENT DISORD, V26, P1049, DOI 10.1002/mds.23732
  102. Schapira AHV, 2009, TRENDS PHARMACOL SCI, V30, P41, DOI 10.1016/j.tips.2008.10.005
  103. Scholz SW, 2012, CSH PERSPECT MED, V2, DOI 10.1101/cshperspect.a009449
  104. Stanwood GD, 2006, EUR J NEUROSCI, V24, P806, DOI 10.1111/j.1460-9568.2006.04970.x
  105. Steinbrenner H, 2013, ARCH BIOCHEM BIOPHYS, V536, P152, DOI 10.1016/j.abb.2013.02.021
  106. Stieglitz B, 2012, J BIOL CHEM, V287, P20823, DOI 10.1074/jbc.M112.359547
  107. Terashima M, 2010, J NEUROSCI RES, V88, P1387, DOI 10.1002/jnr.22315
  108. Tokunaga F, 2013, J BIOCHEM, V154, P313, DOI 10.1093/jb/mvt079
  109. Toyo-oka K, 2008, J CELL BIOL, V180, P1133, DOI 10.1083/jcb.200705148
  110. Vanderweyde T, 2013, GERONTOLOGY, V59, P524, DOI 10.1159/000354170
  111. Vejux A, 2009, MOL ASPECTS MED, V30, P153, DOI 10.1016/j.mam.2009.02.006
  112. Venkatraman A, 2014, HUM MOL GENET, V23, P3733, DOI 10.1093/hmg/ddu081
  113. Wang Z, 2012, J CELL MOL MED, V16, P2271, DOI 10.1111/j.1582-4934.2012.01574.x
  114. Weirauch M. T., 2011, APPL STAT NETWORK BI, V1, P215
  115. Weng QJ, 2012, NEURON, V73, P713, DOI 10.1016/j.neuron.2011.12.021
  116. Wu MY, 2006, GENE DEV, V20, P2859, DOI 10.1101/gad.1452206
  117. Xia LC, 2013, BIOINFORMATICS, V29, P230, DOI 10.1093/bioinformatics/bts668
  118. Yamashita C., 2014, NEUROBIOL AGING, V35
  119. You YG, 2010, BMB REP, V43, P485, DOI 10.5483/BMBRep.2010.43.7.485
  120. Zhang XH, 2005, GENE DEV, V19, P827, DOI 10.1101/gad.1286005
  121. Zhang Y, 2014, J ALLERGY CLIN IMMUN, V133, P1400, DOI 10.1016/j.jaci.2014.02.013
  122. Zhu J, 2009, J LIPID RES, V50, P1330, DOI 10.1194/jlr.M900034-JLR200