Multicellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repair

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorOLIVEIRA, N. C. de Almeida
dc.contributor.authorNERI, E. A.
dc.contributor.authorSILVA, C. M.
dc.contributor.authorVALADãO, I. C.
dc.contributor.authorFONSECA-ALANIZ, M. H.
dc.contributor.authorZOGBI, C.
dc.contributor.authorLEVY, D.
dc.contributor.authorBYDLOWSKI, S. P.
dc.contributor.authorKRIEGER, J. E.
dc.date.accessioned2023-10-04T14:44:06Z
dc.date.available2023-10-04T14:44:06Z
dc.date.issued2022
dc.description.abstractCardiac transplantation of adipose-derived stem cells (ASC) modulates the post-myocardial infarction (post-MI) repair response. Biomolecules secreted or shuttled within extracellular vesicles, such as exosomes, may participate in the concerted response. We investigated the exosome’s microRNAs due to their capacity to fine-tune gene expression, potentially affecting the multicellular repair response. We profiled and quantified rat ASC-exosome miRNAs and used bioinformatics to select uncharacterized miRNAs down-regulated in post-MI related to cardiac repair. We selected and validated miR-196a-5p and miR-425-5p as candidates for the concerted response in neonatal cardiomyocytes, cardiac fibroblasts, endothelial cells, and macrophages using a high-content screening platform. Both miRNAs prevented cardiomyocyte ischemia-induced mitochondrial dysfunction and reactive oxygen species production, increased angiogenesis, and polarized macrophages toward the anti-inflammatory M2 immunophenotype. Moreover, miR-196a-5p reduced and reversed myofibroblast activation and decreased collagen expression. Our data provide evidence that the exosome-derived miR-196a-5p and miR-425-5p influence biological processes critical to the concerted multicellular repair response post-MI. © 2022 The Author(s).eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexScopus
dc.description.sponsorshipConselho Na-cional de Pesquisa
dc.description.sponsorshipCoordenac¸ ão de Aperfeic¸ oamento de Pessoal de Nível Superior
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, (15/50216-5, 2013/17368-0, 2017/07024-3, 2017/17296-0)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, (88887.643917/2021-00)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, (309179/2013-0, 441020/2018-6, INCT - 465586/2014-7)
dc.identifier.citationCLINICAL SCIENCE, v.136, n.17, p.1281-1301, 2022
dc.identifier.doi10.1042/CS20220216
dc.identifier.issn0143-5221
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/55889
dc.language.isoeng
dc.publisherPORTLAND PRESS LTDeng
dc.relation.ispartofClinical Science
dc.rightsopenAccesseng
dc.rights.holderCopyright PORTLAND PRESS LTDeng
dc.subject.otherarginase 1eng
dc.subject.othermicrornaeng
dc.subject.othermicrorna 196a 5peng
dc.subject.othermicrorna 425 5eng
dc.subject.otherprotein baxeng
dc.subject.otherprotein bcl 2eng
dc.subject.otherreactive oxygen metaboliteeng
dc.subject.otherunclassified drugeng
dc.subject.otheradipose derived stem celleng
dc.subject.otheradipose-derived mesenchymal stem celleng
dc.subject.otheradulteng
dc.subject.otherangiogenesiseng
dc.subject.otheranimal celleng
dc.subject.otheranimal experimenteng
dc.subject.otherarticleeng
dc.subject.otherbioinformaticseng
dc.subject.otherbone marrow derived macrophageeng
dc.subject.othercapillary endothelial celleng
dc.subject.othercardiac muscle celleng
dc.subject.othercell activationeng
dc.subject.othercell differentiationeng
dc.subject.othercell isolationeng
dc.subject.othercell metabolismeng
dc.subject.othercell proliferationeng
dc.subject.othercervical spine dislocationeng
dc.subject.othercontrolled studyeng
dc.subject.otherdisorders of mitochondrial functionseng
dc.subject.otherdown regulationeng
dc.subject.otherendothelium celleng
dc.subject.otherexosomeeng
dc.subject.otherfluorescence intensityeng
dc.subject.otherfluorescence microscopyeng
dc.subject.othergene expressioneng
dc.subject.othergene ontologyeng
dc.subject.otherheart fibroblasteng
dc.subject.otherheart transplantationeng
dc.subject.otherhigh content screeningeng
dc.subject.otherimmunofluorescenceeng
dc.subject.otherimmunophenotypingeng
dc.subject.otheringuinal fateng
dc.subject.othermaleeng
dc.subject.othermarker geneeng
dc.subject.othermitochondrial biogenesiseng
dc.subject.othermitochondrial dynamicseng
dc.subject.othermyofibroblasteng
dc.subject.othernonhumaneng
dc.subject.otherprimary cell cultureeng
dc.subject.otherprotein expressioneng
dc.subject.otherrateng
dc.subject.otherreal time polymerase chain reactioneng
dc.subject.othertarget celleng
dc.subject.othertubulogenesiseng
dc.subject.otherwestern blottingeng
dc.titleMulticellular regulation of miR-196a-5p and miR-425-5 from adipose stem cell-derived exosomes and cardiac repaireng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalOLIVEIRA, N. C. de Almeida:Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
hcfmusp.author.externalZOGBI, C.:Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
hcfmusp.citation.scopus10
hcfmusp.contributor.author-fmusphcELIDA ADALGISA NERI
hcfmusp.contributor.author-fmusphcCAIO MATEUS DA SILVA
hcfmusp.contributor.author-fmusphcIURI CORDEIRO VALADAO
hcfmusp.contributor.author-fmusphcMIRIAM HELENA FONSECA ALANIZ
hcfmusp.contributor.author-fmusphcDEBORA LEVY
hcfmusp.contributor.author-fmusphcSERGIO PAULO BYDLOWSKI
hcfmusp.contributor.author-fmusphcJOSE EDUARDO KRIEGER
hcfmusp.description.beginpage1281
hcfmusp.description.endpage1301
hcfmusp.description.issue17
hcfmusp.description.volume136
hcfmusp.origemSCOPUS
hcfmusp.origem.pubmed35894060
hcfmusp.origem.scopus2-s2.0-85137156225
hcfmusp.relation.referencePorrello E.R., Mahmoud A.I., Simpson E., Hill J.A., Richardson J.A., Olson E.N., Et al., Transient regenerative potential of the neonatal mouse heart, Science, 331, pp. 1078-1080, (2011)eng
hcfmusp.relation.referenceZogbi C., Saturi de Carvalho A.E.T., Nakamuta J.S., de M., Caceres V., Prando S., Et al., Early postnatal rat ventricle resection leads to long-term preserved cardiac function despite tissue hypoperfusion, Physiol. Rep, 2, (2014)eng
hcfmusp.relation.referenceWang Z., Cui M., Shah A.M., Ye W., Tan W., Min Y.L., Et al., Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling, Proc. Natl. Acad. Sci. U.S.A, 116, pp. 18455-18465, (2019)eng
hcfmusp.relation.referenceDariolli R., Naghetini M.V., Marques E.F., Takimura C.K., Jensen L.S., Kiers B., Et al., Allogeneic pASC transplantation in humanized pigs attenuates cardiac remodeling post-myocardial infarction, PLoS ONE, 12, (2017)eng
hcfmusp.relation.referenceBurnett H., Earley A., Voors A.A., Senni M., McMurray J.J.V., Deschaseaux C., Et al., Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction: a network meta-analysis, Circ. Heart Fail, 10, (2017)eng
hcfmusp.relation.referenceFrangogiannis N.G., Matricellular proteins in cardiac adaptation and disease, Physiol. Rev, 92, pp. 635-688, (2012)eng
hcfmusp.relation.referenceFrangogiannis N.G., Pathophysiology of myocardial infarction, Compr. Physiol, 5, pp. 1841-1875, (2015)eng
hcfmusp.relation.referenceFrangogiannis N.G., The inflammatory response in myocardial injury, repair, and remodelling, Nat. Rev. Cardiol, 11, pp. 255-265, (2014)eng
hcfmusp.relation.referenceMa Y., De Castro Bras L.E., Toba H., Iyer R.P., Hall M.E., Winniford M.D., Et al., Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling, Pflugers Arch, 466, pp. 1113-1127, (2014)eng
hcfmusp.relation.referenceXin M., Olson E.N., Bassel-Duby R., Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair, Nat. Rev. Mol. Cell Biol, 14, pp. 529-541, (2013)eng
hcfmusp.relation.referenceCai L., Johnstone B.H., Cook T.G., Tan J., Fishbein M.C., Chen P.-S., Et al., IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function, Stem Cells, 27, pp. 230-237, (2009)eng
hcfmusp.relation.referenceDai W., Hale S.L., Kloner R.A., Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats, Regen. Med, 2, pp. 63-68, (2007)eng
hcfmusp.relation.referenceDanieli P., Malpasso G., Ciuffreda M.C., Gnecchi M., Testing the paracrine properties of human mesenchymal stem cells using conditioned medium, Methods Mol. Biol, 1416, pp. 445-456, (2016)eng
hcfmusp.relation.referenceGallina C., Turinetto V., Giachino C., A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome, Stem Cells Int, 2015, (2015)eng
hcfmusp.relation.referenceGnecchi M., Danieli P., Malpasso G., Ciuffreda M.C., Paracrine mechanisms of mesenchymal stem cells in tissue repair, Methods Mol. Biol, 1416, pp. 123-146, (2016)eng
hcfmusp.relation.referenceGnecchi M., He H., Liang O.D., Melo L.G., Morello F., Mu H., Et al., Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells, Nat. Med, 11, pp. 367-368, (2005)eng
hcfmusp.relation.referenceLeiker M., Suzuki G., Iyer V.S., Canty J.M., Lee T., Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells, Cell Transplant, 17, pp. 911-922, (2008)eng
hcfmusp.relation.referenceDanoviz M.E., Nakamuta J.S., Marques F.L.N., dos Santos L., Alvarenga E.C., dos Santos A.A., Et al., Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention, PLoS ONE, 5, (2010)eng
hcfmusp.relation.referenceColombo M., Raposo G., Thery C., Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles, Annu. Rev. Cell Dev. Biol, 30, pp. 255-289, (2014)eng
hcfmusp.relation.referenceValadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol, 9, pp. 654-659, (2007)eng
hcfmusp.relation.referenceVan Niel G., D'Angelo G., Raposo G., Shedding light on the cell biology of extracellular vesicles, Nat. Rev. Mol. Cell Biol, 19, pp. 213-228, (2018)eng
hcfmusp.relation.referenceGarcia-Martin R., Wang G., Brandao B.B., Zanotto T.M., Shah S., Kumar Patel S., Et al., MicroRNA sequence codes for small extracellular vesicle release and cellular retention, Nature, 601, pp. 446-451, (2022)eng
hcfmusp.relation.referenceEulalio A., Mano M., Ferro M.D., Zentilin L., Sinagra G., Zacchigna S., Et al., Functional screening identifies miRNAs inducing cardiac regeneration, Nature, 492, pp. 376-381, (2012)eng
hcfmusp.relation.referenceFerguson S.W., Wang J., Lee C.J., Liu M., Neelamegham S., Canty J.M., Et al., The microRNA regulatory landscape of MSC-derived exosomes: a systems view, Sci. Rep, 8, pp. 1-12, (2018)eng
hcfmusp.relation.referenceVerjans R., Derks W.J.A., Korn K., Sonnichsen B., van Leeuwen R.E.W., Schroen B., Et al., Functional screening identifies MicroRNAs as multi-cellular regulators of heart failure, Sci. Rep, 9, pp. 1-15, (2019)eng
hcfmusp.relation.referenceSong Y., Zhang C., Zhang J., Jiao Z., Dong N., Wang G., Et al., Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction, Theranostics, 9, pp. 2346-2360, (2019)eng
hcfmusp.relation.referencePeoples J.N., Saraf A., Ghazal N., Pham T.T., Kwong J.Q., Mitochondrial dysfunction and oxidative stress in heart disease, Exp. Mol. Med, 51, pp. 1-13, (2019)eng
hcfmusp.relation.referenceThery C., Amigorena S., Raposo G., Clayton A., Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol, (2006)eng
hcfmusp.relation.referenceLiang X., Zhang L., Wang S., Han Q., Zhao R.C., Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a, J. Cell Sci, 129, pp. 2182-2189, (2016)eng
hcfmusp.relation.referenceSchindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, pp. 676-682, (2012)eng
hcfmusp.relation.referenceZhou X.L., Fang Y.-H., Wan L., Xu Q.-R., Huang H., Zhu R.-R., Et al., Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling, J. Cell. Physiol, 234, pp. 8834-8845, (2019)eng
hcfmusp.relation.referenceJensen L., Neri E., Bassaneze V., De Almeida Oliveira N.C., Dariolli R., Turaca L.T., Et al., Integrated molecular, biochemical, and physiological assessment unravels key extraction method mediated influences on rat neonatal cardiomyocytes, J. Cell. Physiol, 233, pp. 5420-5430, (2018)eng
hcfmusp.relation.referenceCarpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Et al., CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biol, 7, (2006)eng
hcfmusp.relation.referenceRiccardi C., Nicoletti I., Analysis of apoptosis by propidium iodide staining and flow cytometry, Nat. Protoc, 1, pp. 1458-1461, (2006)eng
hcfmusp.relation.referenceLivak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, pp. 402-408, (2001)eng
hcfmusp.relation.referenceRu Y., Kechris K.J., Tabakoff B., Hoffman P., Radcliffe R.A., Bowler R., Et al., The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations, Nucleic Acids Res, 42, (2014)eng
hcfmusp.relation.referenceCsardi G., Nepusz T., The igraph software package for complex network researcheng
hcfmusp.relation.referenceWu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Et al., clusterProfiler 4.0: a universal enrichment tool for interpreting omics data, Innov. (New York, NY), 2, (2021)eng
hcfmusp.relation.referenceHuang D.W., Sherman B.T., Lempicki R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, 4, pp. 44-57, (2009)eng
hcfmusp.relation.referenceNakada Y., Canseco D.C., Thet S., Abdisalaam S., Asaithamby A., Santos C.X., Et al., Hypoxia induces heart regeneration in adult mice, Nature, 541, pp. 222-227, (2017)eng
hcfmusp.relation.referenceGuimaraes-Camboa N., Stowe J., Aneas I., Sakabe N., Cattaneo P., Henderson L., Et al., HIF1α represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes, Dev. Cell, 33, pp. 507-521, (2015)eng
hcfmusp.relation.referenceZhu D., Wang Y., Thomas M., McLaughlin K.A., Oguljahan B., Henderson J., Et al., Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway, J. Mol. Cell Cardiol, 162, pp. 10-19, (2022)eng
hcfmusp.relation.referenceGabisonia K., Prosdocimo G., Aquaro G.D., Carlucci L., Zentilin L., Secco I., Et al., MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs, Nature, 569, pp. 418-422, (2019)eng
hcfmusp.relation.referenceXin T., Lv W., Liu D., Jing Y., Hu F., Opa1 reduces hypoxia-induced cardiomyocyte death by improving mitochondrial quality control, Front. Cell Dev. Biol, 8, (2020)eng
hcfmusp.relation.referenceZhou H., Hu S., Jin Q., Shi C., Zhang Y., Zhu P., Et al., Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening, J. Am. Heart Assoc, 6, (2017)eng
hcfmusp.relation.referenceZhang Y., Wang Y., Xu J., Tian F., Hu S., Chen Y., Et al., Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways, J. Pineal Res, 66, (2019)eng
hcfmusp.relation.referenceOng S.B., Subrayan S., Lim S.Y., Yellon D.M., Davidson S.M., Hausenloy D.J., Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury, Circulation, 121, pp. 2012-2022, (2010)eng
hcfmusp.relation.referenceLiu B., Che W., Zheng C., Liu W., Wen J., Fu H., Et al., SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes, Cell. Physiol. Biochem, 32, pp. 1050-1059, (2013)eng
hcfmusp.relation.referenceBuler M., Aatsinki S.M., Izzi V., Uusimaa J., Hakkola J., SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism, FASEB J, 28, pp. 3225-3237, (2014)eng
hcfmusp.relation.referenceXin T., Lu C., Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction, Aging (Albany NY), 12, pp. 4474-4488, (2020)eng
hcfmusp.relation.referenceSuman M., Sharpe J.A., Bentham R.B., Kotiadis V.N., Menegollo M., Pignataro V., Et al., Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients, Hum. Mol. Genet, 27, pp. 2367-2382, (2018)eng
hcfmusp.relation.referenceSeidlmayer L.K., Mages C., Berbner A., Eder-Negrin P., Arias-Loza P.A., Kaspar M., Et al., Mitofusin 2 is essential for IP 3-mediated SR/mitochondria metabolic feedback in ventricular myocytes, Front. Physiol, 10, (2019)eng
hcfmusp.relation.referenceLi J., Zheng C., Wang M., Umano A.D., Dai Q., Zhang C., Et al., ROS-regulated phosphorylation of ITPKB by CAMK2G drives cisplatin resistance in ovarian cancer, Oncogene, 41, pp. 1114-1128, (2022)eng
hcfmusp.relation.referenceLiu B., Wang B., Zhang X., Lock R., Nash T., Vunjak-Novakovic G., Cell type-specific microRNA therapies for myocardial infarction, Sci. Transl. Med, 13, (2021)eng
hcfmusp.relation.referenceMa T., Chen Y., Chen Y., Meng Q., Sun J., Shao L., Et al., MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction, Stem Cells Int, 2018, (2018)eng
hcfmusp.relation.referenceMcGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Et al., The biochemical basis of microRNA targeting efficacy, Science (80-), 366, (2019)eng
hcfmusp.relation.referenceRevelo X.S., Parthiban P., Chen C., Barrow F., Fredrickson G., Wang H., Et al., Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis, Circ. Res, 129, pp. 1086-1101, (2021)eng
hcfmusp.relation.referenceGao Y., Qian N., Xu J., Wang Y., The roles of macrophages in heart regeneration and repair after injury, Front. Cardiovasc. Med, 8, pp. 1-10, (2021)eng
hcfmusp.relation.referenceDeng S., Zhou X., Ge Z., Song Y., Wang H., Liu X., Et al., Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization, Int. J. Biochem. Cell Biol, 114, (2019)eng
hcfmusp.relation.referenceSierra-Filardi E., Puig-Kroger A., Blanco F.J., Nieto C., Bragado R., Palomero M.I., Et al., Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers, Blood, 117, pp. 5092-5101, (2011)eng
hcfmusp.relation.referenceYong K.W., Li Y., Liu F., Gao B., Lu T.J., Wan Abas W.A.B., Et al., Paracrine effects of adipose-derived stem cells on matrix stiffness-induced cardiac myofibroblast differentiation via angiotensin II type 1 receptor and Smad7, Sci. Rep, 6, (2016)eng
hcfmusp.relation.referenceDong X., Cao R., Li Q., Yin L., The long noncoding RNA-H19 mediates the progression of fibrosis from acute kidney injury to chronic kidney disease by regulating the miR-196a/Wnt/β-catenin signaling, Nephron, 146, pp. 209-219, (2022)eng
hcfmusp.relation.referenceLiu L., Zhang C., Wang J., Liu X., Qu H., Zhang G., Et al., A high level of lncFGD5-AS1 inhibits epithelial-to-mesenchymal transition by regulating the miR-196a-5p/SMAD6/BMP axis in gastric cancer, BMC Cancer, 21, (2021)eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication44a8d9ef-ed92-4c2e-817c-166e8089fe7c
relation.isAuthorOfPublication7d5f656a-1bc4-461d-bc67-b5573b2dac78
relation.isAuthorOfPublicationef8df96e-6027-4248-8386-defd0fbdc2e3
relation.isAuthorOfPublication79ff4354-80c7-4a47-93a0-a387e9f378df
relation.isAuthorOfPublication82037efd-05e2-4a33-99b3-6b34a680d053
relation.isAuthorOfPublication34f28529-437f-4414-8216-701def73f655
relation.isAuthorOfPublicationa970d450-bcd4-4662-94d6-ad1c6d043b3c
relation.isAuthorOfPublication.latestForDiscovery44a8d9ef-ed92-4c2e-817c-166e8089fe7c
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_OLIVEIRA_Multicellular_regulation_of_miR196a5p_and_miR4255_from_adipose_2022.PDF
Tamanho:
7.95 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)