Photobiomodulation Associated With Conservative Treatment for Achilles Tendon Rupture: A Double-Blind, Superiority, Randomized Controlled Trial

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorOLIVEIRA, P. R. de
dc.contributor.authorARREBOLA, L. S.
dc.contributor.authorSTéFANI, K. C.
dc.contributor.authorPINFILDI, C. E.
dc.date.accessioned2024-03-13T20:03:58Z
dc.date.available2024-03-13T20:03:58Z
dc.date.issued2022
dc.description.abstractObjective: To investigate the effects of photobiomodulation on Achilles tendon rupture (ATR) treated conservatively. Design: Prospective, patient- and assessor-blinded, parallel, randomized controlled trial. Setting: Patients with acute ATR treated conservatively. Participants: Thirty-four male individuals with acute unilateral ATR treated conservatively (N=34), equally divided in 2 groups: photobiomodulation group (PBMG) and sham group, with mean age of 45.5±9.47 and 48.7±8.38 years, respectively. Intervention: All participants underwent through an immobilization period, followed by rehabilitation sessions (2 d/wk for 12 weeks) comprising strengthening, range of motion, and balance/weightbearing exercises. In PBMG, the tendon was irradiated with a photobiomodulation cluster (1 904 nm/50 mW infrared laser, 4 858 nm/50 mW infrared diodes, and 4 658 nm/40 mW red diodes; power density of 105 mW/cm2 per cluster area) during the immobilization period (2 d/wk for 8 weeks) and the sham group received a simulation of the procedure with no irradiation. Outcomes were assessed at the removal of the immobilization 12 and 16 weeks after tendon rupture. Main Outcome Measures: Primary outcome was the Achilles Tendon Rupture Score. Secondary outcomes included Numerical Pain Rating Scale at rest and during effort, plantar flexor strength, and ankle range of motion. Results: Both groups demonstrated an increase in the Achilles Tendon Rupture Score and improvements in range of motion, plantar flexor strength, and pain. There were no significant differences in outcomes between the 2 groups (P>.05) except in pain during walking, which was significantly lower in the PBMG in week 12 (P<.01, effect size=0.56) and week 16 (P<.01, effect size=0.55). Conclusion: Photobiomodulation associated with conservative treatment is not superior to conservative treatment alone for improving function in patients with acute ATR.eng
dc.description.indexPubMed
dc.description.indexScopus
dc.description.indexDimensions
dc.description.indexWoS
dc.identifier.citationARCHIVES OF REHABILITATION RESEARCH AND CLINICAL TRANSLATION, v.4, n.4, article ID 100219, p, 2022
dc.identifier.doi10.1016/j.arrct.2022.100219
dc.identifier.issn2590-1095
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/58702
dc.language.isoeng
dc.publisherELSEVIER INC.eng
dc.relation.ispartofArchives of Rehabilitation Research and Clinical Translation
dc.rightsopenAccesseng
dc.rights.holderCopyright ELSEVIER INC.eng
dc.subjectAchilles tendoneng
dc.subjectLow-level light therapyeng
dc.subjectRehabilitationeng
dc.subject.otherachilles tendoneng
dc.subject.otherachilles tendon ruptureeng
dc.subject.otheradulteng
dc.subject.otherarticleeng
dc.subject.otherclinical articleeng
dc.subject.otherconservative treatmenteng
dc.subject.othercontrolled studyeng
dc.subject.otherdouble blind procedureeng
dc.subject.otherhumaneng
dc.subject.otherinfrared radiationeng
dc.subject.otherlimb paineng
dc.subject.otherlow level laser therapyeng
dc.subject.othermaleeng
dc.subject.othermiddle agedeng
dc.subject.othermuscle trainingeng
dc.subject.othernumeric rating scaleeng
dc.subject.otheroutcome assessmenteng
dc.subject.otherprospective studyeng
dc.subject.otherrandomized controlled trialeng
dc.subject.otherrange of motioneng
dc.subject.othersimulationeng
dc.subject.othertreatment durationeng
dc.subject.otherwalkingeng
dc.subject.otherweight trainingeng
dc.titlePhotobiomodulation Associated With Conservative Treatment for Achilles Tendon Rupture: A Double-Blind, Superiority, Randomized Controlled Trialeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalOLIVEIRA, P. R. de:Department of Human Movement Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, São Paulo, Physical Therapy Department, Institute of Medical Assistance to the State Public Servant (IAMSPE), São Paulo
hcfmusp.author.externalARREBOLA, L. S.:Department of Human Movement Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, São Paulo, Physical Therapy Department, Institute of Medical Assistance to the State Public Servant (IAMSPE), São Paulo
hcfmusp.author.externalPINFILDI, C. E.:Department of Human Movement Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, São Paulo
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcKELLY CRISTINA STEFANI
hcfmusp.description.articlenumber100219
hcfmusp.description.issue4
hcfmusp.description.volume4
hcfmusp.origemSCOPUS
hcfmusp.origem.dimensionspub.1149756440
hcfmusp.origem.scopus2-s2.0-85174352644
hcfmusp.origem.wosWOS:001135941400002
hcfmusp.relation.referenceHolm C., Kjaer M., Eliasson P., Achilles tendon rupture—treatment and complications: a systematic review, Scand J Med Sci Sports, 25, pp. e1-10, (2015)eng
hcfmusp.relation.referenceLeppilahti J., Orava S., Total Achilles tendon rupture, Sport Med, 25, pp. 79-100, (1998)eng
hcfmusp.relation.referenceJarvinen T.A.H., Kannus P., Maffulli N., Khan K.M., Achilles tendon disorders: etiology and epidemiology, Foot Ankle Clin, 10, pp. 255-266, (2005)eng
hcfmusp.relation.referenceGanestam A., Kallemose T., Troelsen A., Barfod K.W., Increasing incidence of acute Achilles tendon rupture and a noticeable decline in surgical treatment from 1994 to 2013. A nationwide registry study of 33,160 patients, Knee Surg Sports Traumatol Arthrosc, 24, pp. 3730-3737, (2016)eng
hcfmusp.relation.referenceGulati V., Management of achilles tendon injury: a current concepts systematic review, World J Orthop, 6, (2015)eng
hcfmusp.relation.referenceJiang N., Wang B., Chen A., Dong F., Yu B., Operative versus nonoperative treatment for acute Achilles tendon rupture: a meta-analysis based on current evidence, Int Orthop, 36, pp. 765-773, (2012)eng
hcfmusp.relation.referenceZhou K., Song L., Zhang P., Wang C., Wang W., Surgical versus non-surgical methods for acute Achilles tendon rupture: a meta-analysis of randomized controlled trials, J Foot Ankle Surg, 57, pp. 1191-1199, (2018)eng
hcfmusp.relation.referenceOchen Y., Beks R.B., van Heijl M., Et al., Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis, BMJ, 364, (2019)eng
hcfmusp.relation.referenceWestin O., Svensson M., Nilsson Helander K., Et al., Cost-effectiveness analysis of surgical versus non-surgical management of acute Achilles tendon ruptures, Knee Surg Sports Traumatol Arthrosc, 26, pp. 3074-3082, (2018)eng
hcfmusp.relation.referenceTwaddle B.C., Poon P., Early motion for Achilles tendon ruptures: is surgery important?, Am J Sports Med, 35, pp. 2033-2038, (2007)eng
hcfmusp.relation.referenceLantto I., Heikkinen J., Flinkkila T., Et al., Early functional treatment versus cast immobilization in tension after Achilles rupture repair: results of a prospective randomized trial with 10 or more years of follow-up, Am J Sports Med, 43, pp. 2302-2309, (2015)eng
hcfmusp.relation.referenceAlmeida-Lopes L., Rigau J., Zangaro R.A., Guidugli-Neto J., Jaeger M.M., Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence, Lasers Surg Med, 29, pp. 179-184, (2001)eng
hcfmusp.relation.referenceTatmatsu-Rocha J.C., Ferraresi C., Hamblin M.R., Et al., Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin, J Photochem Photobiol B Biol, 164, pp. 96-102, (2016)eng
hcfmusp.relation.referencePinfildi C.E., Liebano R.E., Hochman B.S., Ferreira L.M., Helium-neon laser in viability of random skin flap in rats, Lasers Surg Med, 37, pp. 74-77, (2005)eng
hcfmusp.relation.referenceOliveira F.S., Pinfildi C.E., Parizoto N.A., Et al., Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon, Lasers Surg Med, 41, pp. 271-276, (2009)eng
hcfmusp.relation.referenceNeves M.A.I., Pinfildi C.E., Wood V.T., Et al., Different power settings of LLLT on the repair of the calcaneal tendon, Photomed Laser Surg, 29, pp. 663-668, (2011)eng
hcfmusp.relation.referenceSalate A.C.B., Barbosa G., Gaspar P., Et al., Effect of In-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of Achilles tendon in rats, Photomed Laser Surg, 23, pp. 470-475, (2005)eng
hcfmusp.relation.referenceJoensen J., Gjerdet N.R., Hummelsund S., Iversen V., Lopes-Martins R.A.B., Bjordal J.M., An experimental study of low-level laser therapy in rat Achilles tendon injury, Lasers Med Sci, 27, pp. 103-111, (2012)eng
hcfmusp.relation.referenceSchulz K.F., Altaian D.G., Moher D., CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials, Jpn Pharmacol Ther, 46, pp. 139-147, (2018)eng
hcfmusp.relation.referenceSingh D., Acute Achilles tendon rupture, Br J Sports Med, 51, pp. 1158-1160, (2017)eng
hcfmusp.relation.referenceZambelli R., Pinto R.Z., Magalhaes J.M.B., Et al., Development of the Brazilian Portuguese version of the Achilles Tendon Total Rupture Score (ATRS BrP): a cross-cultural adaptation with reliability and construct validity evaluation, BMC Sports Sci Med Rehabil, 8, (2016)eng
hcfmusp.relation.referenceDe la Fuente C., Pena y Lillo R., Carreno G., Marambio H., Prospective randomized clinical trial of aggressive rehabilitation after acute Achilles tendon ruptures repaired with Dresden technique, Foot, 26, pp. 15-22, (2016)eng
hcfmusp.relation.referenceSanada M., Itien M., Nakagawa N., Murakami R., Isiyama S., Measurement of muscle strength of triceps surae with a hand-held dynamometer, Rigakuryoho Kagaku, 23, pp. 391-394, (2008)eng
hcfmusp.relation.referenceBarfod K.W., Hansen M.S., Holmich P., Troelsen A., Kristensen M.T., Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture: study protocol for a randomized controlled trial, Trials, 17, pp. 1-7, (2016)eng
hcfmusp.relation.referenceCohen J., A power primer, Psychol Bull, 112, pp. 155-159, (1992)eng
hcfmusp.relation.referenceJoseph R., Sim J., Ogollah R., Lewis M., A systematic review finds variable use of the intention-to-treat principle in musculoskeletal randomized controlled trials with missing data, J Clin Epidemiol, 68, pp. 15-24, (2015)eng
hcfmusp.relation.referencede Jesus J.F., Spadacci-Morena D.D., Rabelo ND dos A., Pinfildi C.E., Fukuda T.Y., Plapler H., Low-level laser therapy on tissue repair of partially injured Achilles tendon in rats, Photomed Laser Surg, 32, pp. 345-350, (2014)eng
hcfmusp.relation.referenceCarrinho P., Renno A., Koeke P., Salate A.C.B., Parizotto N.A., Vidal B.C., Comparative study using 685-nm and 830-nm lasers in the tissue repair of tenotomized tendons in the mouse, Photomed Laser Surg, 24, pp. 754-758, (2006)eng
hcfmusp.relation.referenceOlsson N., Silbernagel K.G., Eriksson B.I., Et al., Stable surgical repair with accelerated rehabilitation versus nonsurgical treatment for acute achilles tendon ruptures: a randomized controlled study, Am J Sports Med, 41, pp. 2867-2876, (2013)eng
hcfmusp.relation.referenceNilsson-Helander K., Gravare Silbernagel K., Thomee R., Et al., AcuteAchilles tendon rupture, Am J Sports Med, 38, pp. 2186-2193, (2010)eng
hcfmusp.relation.referenceKorkmaz M., Fatih Erkoc M., Yolcu S., Balbaloglu O., Oztemur Z., Karaaslan F., Weight bearing the same day versus non-weight bearing for 4 weeks in Achilles tendon rupture, J Orthop Sci, 20, pp. 513-516, (2015)eng
hcfmusp.relation.referenceStausholm M.B., Naterstad I.F., Joensen J., Et al., Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: systematic review and meta-analysis of randomised placebo-controlled trials, BMJ Open, 9, (2019)eng
hcfmusp.relation.referenceClijsen R., Brunner A., Barbero M., Clarys P., Taeymans J., Effects of low-level laser therapy on pain in patients with musculoskeletal disorders: a systematic review and meta-analysis, Eur J Phys Rehabil Med, 53, pp. 603-610, (2017)eng
hcfmusp.relation.reference(2019)eng
hcfmusp.relation.referenceTumilty S., Munn J., Abbott J.H., McDonough S., Hurley D.A., Baxter G.D., Laser therapy in the treatment of Achilles tendinopathy: a pilot study, Photomed Laser Surg, 26, pp. 25-30, (2008)eng
hcfmusp.relation.referenceSaunders L., Laser versus ultrasound in the treatment of supraspinatus tendinosis, Physiotherapy, 89, pp. 365-373, (2003)eng
hcfmusp.relation.referenceGuerra F.D.R., Vieira C.P., Almeida M.S., Oliveira L.P., De Aro A.A., Pimentel E.R., LLLT improves tendon healing through increase of MMP activity and collagen synthesis, Lasers Med Sci, 28, pp. 1281-1288, (2013)eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublicationd2112aa6-4472-4ad6-8756-d7ba6c371695
relation.isAuthorOfPublication.latestForDiscoveryd2112aa6-4472-4ad6-8756-d7ba6c371695
Arquivos