Mandibular Spatial Reorientation and Morphological Alteration of Crouzon and Apert Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
LU, Xiaona
SAWH-MARTINEZ, Rajendra
WU, Robin
CABREJO, Raysa
WILSON, Alexander
STEINBACHER, Derek M.
ALPEROVICH, Michael
ALONSO, Nivaldo
PERSING, John A.
Citação
ANNALS OF PLASTIC SURGERY, v.83, n.5, p.568-582, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background From infancy to adulthood, the mandible develops increased ramus height, prominence of the chin, and laterally widened gonial angles. In Crouzon and Apert syndromes, both relative retrognathia and prognathic jaws have been reported. Growth is influenced by a variety of factors, including the growth and relative position of the skull base, functional coordination, and the spatial influence of the laryngopharynx. Thus, this study aimed to explore in detail the evolution of the mandible in both syndromes and its relationship with the entire facial structure and skull base. Methods One hundred twenty-three preoperative computed tomographic scans (Crouzon, n = 36; Apert, n = 33; control, n = 54) were included and divided into 5 age subgroups. Computed tomographic scans were measured using Materialise software. Cephalometrics relating to the mandible, facial structures, and cranial base were collected. Statistical analyses were performed using t test and statistical power analysis. Results In Crouzon syndrome, the angle between the cranial base and gnathion was increased prior to 6 months of age by 10.29 degrees (P < 0.001) and by adulthood to 11.95 degrees (P = 0.003) compared with normal. After 6 months of age, the distance between bilateral mandibular condylions (COR-COL) was narrower by 15% (P < 0.001) in Crouzon syndrome compared with control subjects. Before 6 months of age, Apert COR-COL decreased 16% (P < 0.001) compared with control subjects and 13% (P = 0.006) narrower than Crouzon. During 2 to 6 years of age, Apert mandibular ramus height caught up to, and became longer than, Crouzon by 12% (P = 0.011). The nasion-sella-articulare angle of the Apert skull was 5.04 degrees (P < 0.001) less than Crouzon overall. Conclusions In Crouzon syndrome, the changes of the spatial relationship of the mandible to the cranial base develop earlier than the mandibular shape deformity, whereas in Apert syndrome, the spatial and morphological changes are synchronous. The morphological changes of the mandible are disproportional in 3 directions, initially significant shortening of the mandibular width and length, and, subsequently, reduced height. Crouzon has more shortening in mandibular height compared with Apert, reflecting the more shortened posterior cranial base length. The narrowed angle between the mandible and the posterior cranial base in Apert skulls is consistent with the more limited nasopharyngeal and oropharyngeal airway space.
Palavras-chave
Apert syndrome, Crouzon syndrome, mandible
Referências
  1. Bakor SF, 2011, AM J ORTHOD DENTOFAC, V140, P486, DOI 10.1016/j.ajodo.2011.06.017
  2. BHAT M, 1985, ANGLE ORTHOD, V55, P269
  3. BJORK A, 1983, EUR J ORTHODONT, V5, P1
  4. Boutros S, 2007, J CRANIOFAC SURG, V18, P146, DOI 10.1097/01.scs.0000248655.53405.a7
  5. BU BH, 1989, J ORAL MAXIL SURG, V47, P666, DOI 10.1016/S0278-2391(89)80002-3
  6. Burrows AM, 2002, J CRANIOFAC SURG, V13, P244, DOI 10.1097/00001665-200203000-00011
  7. Coll G, 2015, NEUROSURGERY, V76, P571, DOI 10.1227/NEU.0000000000000676
  8. Coquerelle M, 2013, J ANAT, V222, P178, DOI 10.1111/joa.12008
  9. COSTARASVOLARICH M, 1984, AM J ORTHOD DENTOFAC, V85, P475, DOI 10.1016/0002-9416(84)90087-3
  10. DAVID DJ, 1990, PLAST RECONSTR SURG, V85, P344, DOI 10.1097/00006534-199003000-00002
  11. Doerga PN, 2016, J CRANIO MAXILL SURG, V44, P191, DOI 10.1016/j.jcms.2015.11.004
  12. DUBRUL EL, 1960, AM J PHYS ANTHROPOL, V18, P153, DOI 10.1002/ajpa.1330180212
  13. Elmi P, 2015, CLEFT PALATE-CRAN J, V52, P327, DOI 10.1597/13-143
  14. ENLOW DH, 1971, ANGLE ORTHOD, V41, P271
  15. ENLOW DH, 1966, AMER J ORTHODONTICS, V52, P283, DOI 10.1016/0002-9416(66)90169-2
  16. Esenlik E, 2017, PLAST RECONSTR SURG, V140, P1240, DOI 10.1097/PRS.0000000000003853
  17. Forte AJ, 2018, PLAST RECONSTR SURG
  18. Forte AJ, 2014, PLAST RECONSTR SURG, V134, P285, DOI 10.1097/PRS.0000000000000360
  19. Garcia-Aznar JM, 2005, BIOMECH MODEL MECHAN, V4, P147, DOI 10.1007/s10237-005-0067-x
  20. HANS MG, 1995, ANGLE ORTHOD, V65, P335
  21. Hohoff Ariane, 2007, Head Face Med, V3, P10
  22. Jacobsen HC, 2009, J ORAL MAXIL SURG, V67, P2004, DOI 10.1016/j.joms.2009.04.025
  23. Khominsky A, 2018, ARCH ORAL BIOL, V86, P123, DOI 10.1016/j.archoralbio.2017.10.022
  24. Kolar JC, 2017, J CRANIOFAC SURG, V28, P709, DOI 10.1097/SCS.0000000000003494
  25. Krarup S, 2005, J ANAT, V207, P669, DOI 10.1111/j.1469-7580.2005.00479.x
  26. KREIBORG S, 1993, J CRANIO MAXILL SURG, V21, P181, DOI 10.1016/S1010-5182(05)80478-0
  27. Kreiborg S, 1981, Scand J Plast Reconstr Surg Suppl, V18, P1
  28. Kreiborg S, 1999, J CRAN GENET DEV BIO, V19, P1
  29. KREIBORG S, 1981, SCAND J PLAST RECONS, V15, P187, DOI 10.3109/02844318109103433
  30. Lu XN, 2019, J CRANIOFAC SURG, V30, P317, DOI 10.1097/SCS.0000000000004836
  31. Lux CJ, 2004, CLEFT PALATE-CRAN J, V41, P304
  32. Marianetti TM, 2014, J CRANIOFAC SURG, V25, P1190, DOI 10.1097/SCS.0000000000000838
  33. Nie XG, 2005, ACTA ODONTOL SCAND, V63, P127, DOI 10.1080/00016350510019847
  34. Nout E, 2010, PLAST RECONSTR SURG, V126, P564, DOI 10.1097/PRS.0b013e3181de227f
  35. Perlyn CA, 2002, PLAST RECONSTR SURG, V109, P1809, DOI 10.1097/00006534-200205000-00005
  36. RONNING O, 1995, ACTA ODONTOL SCAND, V53, P162, DOI 10.3109/00016359509005966
  37. Wink JD, 2013, J CRANIOFAC SURG, V24, P1408, DOI 10.1097/SCS.0b013e31828dcf09