Investigation of antimicrobial susceptibility and genetic diversity among <i>Staphylococcus pseudintermedius</i> isolated from dogs in Rio de Janeiro

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
TEIXEIRA, Izabel Mello
ASSUMPCAO, Yasmim de Moraes
PALETTA, Ana Clara Cabral
AGUIAR, Louise
GUIMARAES, Luciana
SILVA, Isabella Thomaz da
BOTELHO, Ana Maria Nunes
JAEGER, Lauren Hubert
FERREIRA, Renata Fernandes
Citação
SCIENTIFIC REPORTS, v.13, n.1, article ID 20219, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Staphylococcus pseudintermedius is an opportunistic pathogen causing a variety of infections that are difficult to treat, especially because of the development of antimicrobial resistance. It has a clonal distribution around the world. To have a better understanding of the MRSP population, we search the presence of MRSP in colonized or infected dogs. Samples from 99 dogs with infections and 35 from asymptomatic dogs were collected. Isolates were identified by mass spectrometry and Multiplex-PCR. The mecA gene was confirmed by conventional PCR. MRSP strains were analyzed by whole-genome sequencing. 75 S. pseudintermedius were identified, most from infection cases. The species were isolated from 70 out of the 135 dogs. Penicillin and Trimethoprim/Sulfamethoxazole presented higher resistance rates. Forty-seven strains were classified as multi-drug resistant (MDR), and were more isolated from dogs with infection (P < 0.05). Eighteen samples were classified as MRSP, representing 24.0% of the population. Six of 16 MRSP sequenced samples belonged to the world spread clone ST71; others belonged to unknown clones. Most samples carried the SCCmec type IIIA. Twenty-one different genetic resistance determinants were found among MRPS strains. MRSP is circulating among infected and colonized dogs in Rio de Janeiro, Brazil.
Palavras-chave
Referências
  1. Bannoehr J, 2012, VET DERMATOL, V23, P253, DOI 10.1111/j.1365-3164.2012.01046.x
  2. Bean DC, 2016, AUST VET J, V94, P456, DOI 10.1111/avj.12528
  3. Bloom P, 2014, VET J, V199, P217, DOI 10.1016/j.tvjl.2013.11.014
  4. Bourguignon E, 2016, ARQ BRAS MED VET ZOO, V68, P299, DOI 10.1590/1678-4162-8150
  5. Brooks MR, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00684-19
  6. Bruce SA, 2022, FRONT MICROBIOL, V13, DOI 10.3389/fmicb.2022.798175
  7. Carroll KC, 2021, PLOS PATHOG, V17, DOI 10.1371/journal.ppat.1009961
  8. Chanchaithong P, 2014, J APPL MICROBIOL, V117, P572, DOI 10.1111/jam.12545
  9. Devriese LA, 2005, INT J SYST EVOL MICR, V55, P1569, DOI 10.1099/ijs.0.63413-0
  10. Diaz M. A., 2019, BMJ Case Rep., V12
  11. dos Santos TP, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01599
  12. Gagetti P, 2021, ANTIBIOTICS-BASEL, V10, DOI 10.3390/antibiotics10111299
  13. Gharsa H, 2013, MICROB ECOL, V66, P363, DOI 10.1007/s00248-013-0243-y
  14. Gómez-Sanz E, 2011, COMP IMMUNOL MICROB, V34, P447, DOI [10.1016/j.cimid.2011.08.002, 10.1016/j.cimid.2010.06.006]
  15. Hillier A, 2014, VET DERMATOL, V25, P163, DOI 10.1111/vde.12118
  16. Jantorn P, 2021, PHARMACEUTICALS-BASE, V14, DOI 10.3390/ph14060592
  17. Kunder DA, 2015, VET DERMATOL, V26, P406, DOI 10.1111/vde.12254
  18. Lakhundi S, 2018, CLIN MICROBIOL REV, V31, DOI [10.1128/CMR.00020-18, 10.1128/cmr.00020-18]
  19. Lehner G, 2014, VET MICROBIOL, V168, P154, DOI 10.1016/j.vetmic.2013.10.023
  20. Magiorakos AP, 2012, CLIN MICROBIOL INFEC, V18, P268, DOI 10.1111/j.1469-0691.2011.03570.x
  21. Onuma K, 2012, VET DERMATOL, V23, P17, DOI 10.1111/j.1365-3164.2011.00995.x
  22. Penna B, 2013, VET MICROBIOL, V162, P298, DOI 10.1016/j.vetmic.2012.08.022
  23. Penna B, 2009, BRAZ J MICROBIOL, V40, P490, DOI [10.1590/S1517-83822009000300011, 10.1590/S1517-838220090003000011]
  24. Penna B, 2022, BRAZ J MICROBIOL, V53, P2335, DOI 10.1007/s42770-022-00852-9
  25. Penna B, 2010, CAN VET J, V51, P738
  26. Penna B, 2010, VET DERMATOL, V21, P292, DOI 10.1111/j.1365-3164.2009.00842.x
  27. Perreten V, 2010, J ANTIMICROB CHEMOTH, V65, P1145, DOI 10.1093/jac/dkq078
  28. Priyantha R, 2016, CAN VET J, V57, P65
  29. Quitoco Isidorio Mebinda Zuco, 2013, BMC Res Notes, V6, P336, DOI 10.1186/1756-0500-6-336
  30. Ravens PA, 2014, AUST VET J, V92, P149, DOI 10.1111/avj.12176
  31. Rynhoud H., 2021, Front. Vet. Sci., V8, P1
  32. Sasaki T, 2010, J CLIN MICROBIOL, V48, P765, DOI 10.1128/JCM.01232-09
  33. Smith JT, 2020, COMMUN BIOL, V3, DOI 10.1038/s42003-020-1009-y
  34. Somayaji R, 2016, DIAGN MICR INFEC DIS, V85, P471, DOI 10.1016/j.diagmicrobio.2016.05.008
  35. Viegas FM, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0269422
  36. Vigo GB, 2015, REV ARGENT MICROBIOL, V47, P206, DOI 10.1016/j.ram.2015.06.002
  37. WALSH PS, 1991, BIOTECHNIQUES, V10, P506, DOI 10.2144/000114018
  38. Wegener A, 2018, VET MICROBIOL, V225, P125, DOI 10.1016/j.vetmic.2018.09.013
  39. Windahl U, 2016, VET MICROBIOL, V189, P8, DOI 10.1016/j.vetmic.2016.04.010
  40. Worthing KA, 2018, VET MICROBIOL, V216, P153, DOI 10.1016/j.vetmic.2018.02.004
  41. Zerbino DR, 2008, GENOME RES, V18, P821, DOI 10.1101/gr.074492.107
  42. Zhang KY, 2005, J CLIN MICROBIOL, V43, P5026, DOI 10.1128/JCM.43.10.5026-5033.2005