Enteral gabexate mesilate improves volume requirements and autonomic cardiovascular function after experimental trauma/hemorrhagic shock in the absence of blood reperfusion

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
E-CENTURY PUBLISHING CORP
Autores
SANTOS, Fernando Dos
LI, Joyce B.
MAZOR, Rafi
ALETTI, Federico
KISTLER, Erik B.
Citação
AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, v.14, n.10, p.7391-+, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The standard of care for fluid resuscitation of trauma/hemorrhagic shock (T/HS) is the infusion of blood. However, in many instances, blood product transfusion may not be feasible. Consequently, crystalloid solutions may be utilized as temporizing cost-effective resuscitation fluids. In this study, we explored an alternative therapeutic strategy of enteral protease inhibition adjunctive to intravenous Lactated Ringer's (LR) reperfusion after T/HS. Male Wistar rats underwent midline laparotomy (trauma) and an enteral catheter was inserted orally and positioned postpyloric for the infusion of vehicle (Golytely (R)) with or without the serine protease inhibitor gabexate mesilate (GM) (n=8/group). Hemorrhagic shock was induced by blood removal to reduce the mean arterial blood pressure (MAP) to 35-40 mmHg for 90 minutes, before resuscitation with LR. Animals treated with enteral GM required significantly less crystalloid volume to achieve hemodynamic stability and displayed improvements in both blood pressure and autonomic function (via increased baroreflex sensitivity to vasopressors, heightened vascular sympathetic modulation, elevated levels of circulating catecholamines, and increased alpha 1-adrenergic receptor density) compared to untreated (control) shocked animals. Resistance arteries isolated from healthy donor animals and perfused with plasma from untreated T/HS animals revealed impaired vascular response to the alpha 1 adrenergic agonist phenylephrine and decreased reactivity to sodium nitroprusside that was preserved in the GM-treated group. These findings suggest that blockade of serine proteases within the intestinal lumen in non-blood resuscitated experimental T/HS preserves and enhances peripheral sympathetic modulation, improving hemodynamics. Enteral infusion of gabexate mesilate may be a new and promising approach to the management of trauma/hemorrhagic shock.
Palavras-chave
Trauma/hemorrhagic shock, enteral protease inhibition, gabexate mesilate, autonomic cardiovascular function
Referências
  1. Aletti F, 2022, EUR J TRAUMA EMERG S, V48, P1579, DOI 10.1007/s00068-020-01591-y
  2. Alsaigh Tom, 2015, World J Crit Care Med, V4, P287, DOI 10.5492/wjccm.v4.i4.287
  3. Baranski GM, 2012, J TRAUMA ACUTE CARE, V73, P343, DOI 10.1097/TA.0b013e31825a785a
  4. Batchinsky AI, 2007, AUTON NEUROSCI-BASIC, V136, P43, DOI 10.1016/j.autneu.2007.03.004
  5. Bonanno Fabrizio Giuseppe, 2011, J Emerg Trauma Shock, V4, P233, DOI 10.4103/0974-2700.82211
  6. Bougle A, 2013, ANN INTENSIVE CARE, V3, DOI 10.1186/2110-5820-3-1
  7. Browning KN, 2014, COMPR PHYSIOL, V4, P1339, DOI 10.1002/cphy.c130055
  8. CHIEN S, 1967, PHYSIOL REV, V47, P214, DOI 10.1152/physrev.1967.47.2.214
  9. Cooke WH, 2006, J TRAUMA, V60, P363, DOI 10.1097/01.ta.0000196623.48952.0e
  10. De Backer D, 2010, NEW ENGL J MED, V362, P779, DOI 10.1056/NEJMoa0907118
  11. DeLano FA, 2013, SCI TRANSL MED, V5, DOI 10.1126/scitranslmed.3005046
  12. Dias LD, 2011, CARDIOVASC DIABETOL, V10, DOI 10.1186/1475-2840-10-33
  13. Silva KAD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048826
  14. Eastridge BJ, 2019, TRANSFUSION, V59, P1423, DOI 10.1111/trf.15161
  15. Eastridge BJ, 2011, J TRAUMA, V71, pS4, DOI 10.1097/TA.0b013e318221147b
  16. Gomez H, 2012, J SURG RES, V178, P358, DOI 10.1016/j.jss.2011.12.015
  17. Gouveia S, 2015, CLIN SCI, V129, P1163, DOI 10.1042/CS20150341
  18. Jadeja RN, 2015, JOVE-J VIS EXP, DOI 10.3791/50997
  19. Kistler EB, 2012, SHOCK, V38, P262, DOI 10.1097/SHK.0b013e31825b1717
  20. KIUCHI K, 1992, CIRC RES, V71, P1185, DOI 10.1161/01.RES.71.5.1185
  21. Lambden S, 2018, CRIT CARE, V22, DOI 10.1186/s13054-018-2102-1
  22. Lawton PF, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00099
  23. Li ZQ, 2019, BIOSCIENCE REP, V39, DOI 10.1042/BSR20181215
  24. MALLIANI A, 1991, CIRCULATION, V84, P482, DOI 10.1161/01.CIR.84.2.482
  25. Mazor Rafi, 2021, Crit Care Explor, V3, pe0469, DOI 10.1097/CCE.0000000000000469
  26. Rao G, 2018, AM J PHYSIOL-GASTR L, V315, pG318, DOI 10.1152/ajpgi.00066.2018
  27. Roberts I, 2011, LANCET, V377, P1096, DOI 10.1016/S0140-6736(11)60278-X
  28. Ryan KL, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00110
  29. Santamaria MH, 2017, J TRAUMA ACUTE CARE, V83, P263, DOI 10.1097/TA.0000000000001513
  30. Stewart RM, 2003, J TRAUMA, V54, P66, DOI 10.1097/00005373-200301000-00009
  31. StewartRM MyersJG, J TRAUMA2003, V54, P70