Guapiacu virus, a new insect-specific flavivirus isolated from two species of Aedes mosquitoes from Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE RESEARCH
Autores
RIBEIRO, Geovani de Oliveira
RIBEIRO, Edcelha Soares D'Athaide
REGO, Marlisson Octavio da S.
MONTEIRO, Fred Julio Costa
VILLANOVA, Fabiola
NOGUEIRA, Juliana Silva
MAEDA, Adriana Yurika
SOUZA, Renato Pereira de
Citação
SCIENTIFIC REPORTS, v.11, n.1, article ID 4674, 13p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Classical insect-flaviviruses (cISFVs) and dual host-related insect-specific flavivirus (dISFV) are within the major group of insect-specific flavivirus. Remarkably dISFV are evolutionarily related to some of the pathogenic flavivirus, such as Zika and dengue viruses. The Evolutionary relatedness of dISFV to flavivirus allowed us to investigate the evolutionary principle of host adaptation. Additionally, dISFV can be used for the development of flavivirus vaccines and to explore underlying principles of mammalian pathogenicity. Here we describe the genetic characterization of a novel putative dISFV, termed Guapiacu virus (GUAPV). Distinct strains of GUAPV were isolated from pools of Aedes terrens and Aedes scapularis mosquitoes. Additionally, we also detected viral GUAPV RNA in a plasma sample of an individual febrile from the Amazon region (North of Brazil). Although GUAPV did not replicate in tested mammalian cells, 3 ' UTR secondary structures duplication and codon usage index were similar to pathogenic flavivirus.
Palavras-chave
Referências
  1. Altan E, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12080793
  2. Blitvich BJ, 2017, VIRUSES-BASEL, V9, DOI 10.3390/v9060154
  3. Blitvich BJ, 2015, VIRUSES-BASEL, V7, P1927, DOI 10.3390/v7041927
  4. Bolling BG, 2015, VIRUSES-BASEL, V7, P4911, DOI 10.3390/v7092851
  5. Bolling BG, 2011, AM J TROP MED HYG, V85, P169, DOI 10.4269/ajtmh.2011.10-0474
  6. Bonning BC, 2019, CURR ISSUES MOL BIOL, V34, P1, DOI 10.21775/cimb.034.001
  7. Charles J, 2017, ARCH VIROL, V162, P3913, DOI 10.1007/s00705-017-3552-5
  8. Cook S, 2006, ARCH VIROL, V151, P309, DOI 10.1007/s00705-005-0626-6
  9. Cunha MS, 2020, ARCH VIROL, V165, P1863, DOI 10.1007/s00705-020-04680-w
  10. Cunha MS, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41950-3
  11. da Costa AC, 2017, EMERG INFECT DIS, V23, P1742, DOI 10.3201/eid2310.170307
  12. Darty K, 2009, BIOINFORMATICS, V25, P1974, DOI 10.1093/bioinformatics/btp250
  13. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  14. Di Paola N, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191652
  15. Fernandes LN, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10120666
  16. Garcia-Moreno M, 2016, SCI REP-UK, V6, DOI 10.1038/srep19217
  17. Gould EA, 2003, ADV VIRUS RES, V59, P277, DOI 10.1016/S0065-3527(03)59008-X
  18. Gritsun DJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092056
  19. Gritsun TS, 2006, J GEN VIROL, V87, P3297, DOI 10.1099/vir.0.82235-0
  20. Gritsun TS, 2006, VIROLOGY, V354, P215, DOI 10.1016/j.virol.2006.07.036
  21. Gritsun TS, 2006, J GEN VIROL, V87, P2615, DOI 10.1099/vir.0.81950-0
  22. GUBLER DJ, 1984, AM J TROP MED HYG, V33, P158, DOI 10.4269/ajtmh.1984.33.158
  23. Guindon S, 2010, SYST BIOL, V59, P307, DOI 10.1093/sysbio/syq010
  24. Guzman H, 2018, AM J TROP MED HYG, V98, P410, DOI 10.4269/ajtmh.17-0350
  25. Haddow AD, 2013, VIROLOGY, V440, P134, DOI 10.1016/j.virol.2012.12.008
  26. Halbach R, 2017, CURR OPIN INSECT SCI, V22, P16, DOI 10.1016/j.cois.2017.05.004
  27. Hall, 1999, NUCL ACIDS S SER, V41, P95, DOI 10.5598/IMAFUNGUS.2011.02.02.06
  28. Holbrook MR, 2017, VIRUSES-BASEL, V9, DOI 10.3390/v9050097
  29. Huhtamo E, 2009, J VIROL, V83, P9532, DOI 10.1128/JVI.00529-09
  30. Junglen S, 2017, MSPHERE, V2, DOI [10.1128/mSphere.00375-16, 10.1128/msphere.00375-16]
  31. Junglen S, 2009, J VIROL, V83, P4462, DOI 10.1128/JVI.00014-09
  32. Kafer S, 2019, PLOS PATHOG, V15, DOI 10.1371/journal.ppat.1008224
  33. Kolodziejek J, 2013, J GEN VIROL, V94, P2449, DOI 10.1099/vir.0.056200-0
  34. Kumar S, 2018, MOL BIOL EVOL, V35, P1547, DOI 10.1093/molbev/msy096
  35. Kuno G, 1998, J VIROL, V72, P73, DOI 10.1128/JVI.72.1.73-83.1998
  36. Lanciotti RS, 2008, EMERG INFECT DIS, V14, P1232, DOI 10.3201/eid1408.080287
  37. Li CX, 2015, ELIFE, V4, DOI 10.7554/eLife.05378
  38. Lindenbach BD, 2003, ADV VIRUS RES, V59, P23, DOI 10.1016/S0065-3527(03)59002-9
  39. Lorenz R, 2011, ALGORITHM MOL BIOL, V6, DOI 10.1186/1748-7188-6-26
  40. Marklewitz M, 2015, P NATL ACAD SCI USA, V112, P7536, DOI 10.1073/pnas.1502036112
  41. Markoff L, 2003, ADV VIRUS RES, V59, P177, DOI 10.1016/S0065-3527(03)59006-6
  42. Moureau G, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117849
  43. Nasar F, 2012, P NATL ACAD SCI USA, V109, P14622, DOI 10.1073/pnas.1204787109
  44. Nawrocki EP, 2013, BIOINFORMATICS, V29, P2933, DOI 10.1093/bioinformatics/btt509
  45. Ng WC, 2017, VIRUSES-BASEL, V9, DOI 10.3390/v9060137
  46. Ochsenreiter R, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11030298
  47. Ohlund P, 2019, VIRUS GENES, V55, P127, DOI 10.1007/s11262-018-01629-9
  48. Papa A, 2014, T ROY SOC TROP MED H, V108, P555, DOI 10.1093/trstmh/tru100
  49. Patel P, 2013, VIROL J, V10, DOI 10.1186/1743-422X-10-58
  50. Pauvolid-Correa A, 2015, ARCH VIROL, V160, P21, DOI 10.1007/s00705-014-2219-8
  51. Pettersson JHO, 2014, J GEN VIROL, V95, P1969, DOI 10.1099/vir.0.065227-0
  52. Pijlman GP, 2008, CELL HOST MICROBE, V4, P579, DOI 10.1016/j.chom.2008.10.007
  53. Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083
  54. Puigbo P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-65
  55. Puigbo P, 2008, BIOL DIRECT, V3, DOI 10.1186/1745-6150-3-38
  56. Ribeiro GD, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11020147
  57. Schneider AD, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-43390-5
  58. SHARP PM, 1987, NUCLEIC ACIDS RES, V15, P1281, DOI 10.1093/nar/15.3.1281
  59. Shi M, 2016, NATURE, V540, P539, DOI 10.1038/nature20167
  60. Simon D, 2017, BIOCHEM BIOPH RES CO, V492, P572, DOI 10.1016/j.bbrc.2017.06.088
  61. Slonchak A, 2018, ANTIVIR RES, V159, P13, DOI 10.1016/j.antiviral.2018.09.006
  62. Smith C, 2010, NUCLEIC ACIDS RES, V38, pW373, DOI 10.1093/nar/gkq316
  63. Vasilakis N, 2015, CURR OPIN VIROL, V15, P69, DOI 10.1016/j.coviro.2015.08.007
  64. Villordo SM, 2016, TRENDS MICROBIOL, V24, P270, DOI 10.1016/j.tim.2016.01.002
  65. Villordo SM, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1004604
  66. Will S, 2012, RNA, V18, P900, DOI 10.1261/rna.029041.111
  67. Zuker M, 2003, NUCLEIC ACIDS RES, V31, P3406, DOI 10.1093/nar/gkg595