Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression

Carregando...
Imagem de Miniatura
Citações na Scopus
57
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
PINTO-JUNIOR, Danilo C.
MICHALANI, Maria L.
YONAMINE, Caio Y.
ESTEVES, Joao V.
OKAMOTO, Maristela M.
SERAPHIM, Patricia M.
Citação
SCIENTIFIC REPORTS, v.8, article ID 8109, 11p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Little is known about advanced glycation end products (AGEs) participation in glucose homeostasis, a process in which skeletal muscle glucose transporter GLUT4 (Scl2 alpha 4 gene) plays a key role. This study investigated (1) the in vivo and in vitro effects of AGEs on Slc2 alpha 4/GLUT4 expression in skeletal muscle of healthy rats, and (2) the potential involvement of endoplasmic reticulum and inflammatory stress in the observed regulations. For in vivo analysis, rats were treated with advanced glycated rat albumin (AGE-albumin) for 12 weeks; for in vitro analysis, soleus muscles from normal rats were incubated with bovine AGE-albumin for 2.5 to 7.5 hours. In vivo, AGE-albumin induced whole-body insulin resistance; decreased (similar to 30%) Slc2 alpha 4 mRNA and GLUT4 protein content; and increased (similar to 30%) the nuclear content of nuclear factor NF-kappa-B p50 subunit (NFKB1), and cellular content of 78 kDa glucose-regulated protein (GRP78). In vitro, incubation with AGE-albumin decreased (similar to 50%) the Slc2 alpha 4/GLUT4 content; and increased cellular content of GRP78/94, phosphorylated-IKK-alpha/beta, nuclear content of NFKB1 and RELA, and the nuclear protein binding into Slc2 alpha 4 promoter NFKB-binding site. The data reveal that AGEs impair glucose homeostasis in non-diabetic states of increased AGEs concentration; an effect that involves activation of endoplasmic reticulum-and inflammatory-stress and repression of Slc2 alpha 4/GLUT4 expression.
Palavras-chave
Referências
  1. Adamopoulos C, 2016, GLYCOCONJUGATE J, V33, P537, DOI 10.1007/s10719-016-9680-4
  2. Anelli T, 2008, EMBO J, V27, P315, DOI 10.1038/sj.emboj.7601974
  3. Banuls C, 2017, METABOLISM, V71, P153, DOI 10.1016/j.metabol.2017.02.012
  4. Brownlee M, 2001, NATURE, V414, P813, DOI 10.1038/414813a
  5. Cai WJ, 2006, P NATL ACAD SCI USA, V103, P13801, DOI 10.1073/pnas.0600362103
  6. Cai WJ, 2012, P NATL ACAD SCI USA, V109, P15888, DOI 10.1073/pnas.1205847109
  7. CAMPS M, 1992, BIOCHEM J, V282, P765, DOI 10.1042/bj2820765
  8. Cassese A, 2008, J BIOL CHEM, V283, P36088, DOI 10.1074/jbc.M801698200
  9. Correa-Giannella ML, 2013, PHARMACOGENOMICS, V14, P847, DOI [10.2217/PGS.13.45, 10.2217/pgs.13.45]
  10. Coughlan MT, 2011, DIABETES, V60, P2523, DOI 10.2337/db10-1033
  11. da Silva KS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00723
  12. DeFronzo RA, 2004, MED CLIN N AM, V88, P787, DOI 10.1016/j.mcna.2004.04.013
  13. DELA F, 1994, DIABETES, V43, P862, DOI 10.2337/diabetes.43.7.862
  14. DOHM GL, 1991, AM J PHYSIOL, V260, pE459
  15. Dozio E, 2017, ENDOCRINE, V55, P682, DOI 10.1007/s12020-016-1091-6
  16. Fabre NT, 2017, MOL CELL ENDOCRINOL, V447, P116, DOI 10.1016/j.mce.2017.02.035
  17. Furuya DT, 2013, MOL CELL ENDOCRINOL, V370, P87, DOI 10.1016/j.mce.2013.01.019
  18. GARVEY WT, 1992, DIABETES, V41, P465, DOI 10.2337/diabetes.41.4.465
  19. Gaster M, 2001, DIABETES, V50, P1324, DOI 10.2337/diabetes.50.6.1324
  20. HARDIN DS, 1993, METABOLISM, V42, P1310, DOI 10.1016/0026-0495(93)90130-G
  21. Herman MA, 2006, J CLIN INVEST, V116, P1767, DOI 10.1172/JCI129027
  22. Jessen N, 2005, J APPL PHYSIOL, V99, P330, DOI 10.1152/japplphysiol.00175.2005
  23. Kampmann U, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027854
  24. KLIP A, 1994, FASEB J, V8, P43
  25. Klip A, 2009, APPL PHYSIOL NUTR ME, V34, P481, DOI 10.1139/H09-047
  26. Lima GA, 2009, AM J PHYSIOL-ENDOC M, V296, pE132, DOI 10.1152/ajpendo.90548.2008
  27. MACHADO UF, 1993, HORM METAB RES, V25, P462, DOI 10.1055/s-2007-1002149
  28. Massart J, 2017, DIABETES, V66, P1807, DOI 10.2337/db17-0141
  29. Miele C, 2003, J BIOL CHEM, V278, P47376, DOI 10.1074/jbc.M301088200
  30. Moraes PA, 2014, LIFE SCI, V114, P36, DOI 10.1016/j.lfs.2014.07.040
  31. Mori RCT, 2008, DIABETES OBES METAB, V10, P596, DOI 10.1111/j.1463-1326.2008.00870.x
  32. Okamoto MM, 2011, J ENDOCRINOL, V211, P55, DOI 10.1530/JOE-11-0105
  33. PEDERSEN O, 1990, DIABETES, V39, P865, DOI 10.2337/diabetes.39.7.865
  34. Piperi C, 2012, J CLIN ENDOCR METAB, V97, P2231, DOI 10.1210/jc.2011-3408
  35. Poletto AC, 2015, MOL CELL ENDOCRINOL, V401, P65, DOI 10.1016/j.mce.2014.12.001
  36. Ramasamy R, 2007, MOL NUTR FOOD RES, V51, P1111, DOI 10.1002/mnfr.200700008
  37. Ruan H, 2002, DIABETES, V51, P1319, DOI 10.2337/diabetes.51.5.1319
  38. Shinkai Y, 2010, TOXICOL SCI, V114, P378, DOI 10.1093/toxsci/kfq008
  39. Silva JLT, 2005, MOL CELL ENDOCRINOL, V240, P82, DOI 10.1016/j.mce.2005.05.006
  40. Stentz Frankie B., 2007, Genomics Proteomics & Bioinformatics, V5, P216, DOI 10.1016/S1672-0229(08)60009-1
  41. Thacker JS, 2016, ANAL BIOCHEM, V496, P76, DOI 10.1016/j.ab.2015.11.022
  42. Unoki H, 2007, DIABETES RES CLIN PR, V76, P236, DOI 10.1016/j.diabres.2006.09.016
  43. Uribarri J, 2010, J AM DIET ASSOC, V110, P911, DOI 10.1016/j.jada.2010.03.018
  44. Vlassara H, 2014, CURR DIABETES REP, V14, DOI 10.1007/s11892-013-0453-1
  45. Wu CH, 2011, J AGR FOOD CHEM, V59, P7978, DOI 10.1021/jf201271y
  46. Zierath JR, 2000, DIABETOLOGIA, V43, P821, DOI 10.1007/s001250051457