A custom, low-cost, continuous flow chamber built for experimental Sargassum seaweed decomposition and exposure of small rodents to generated gaseous products

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
CELL PRESS
Citação
HELIYON, v.9, n.8, article ID e18787, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Since 2011, Sargassum events have increased in frequency along the Caribbean and Atlantic coasts. The accumulation and decomposition of large amounts of Sargassum seaweed on beaches pose socio-economic, ecological, and health risks due to the emission of hydrogen sulfide (H2S), methane, and ammonia. However, limited research exists on the emission processes and the health effects of subchronic and chronic exposure to low levels of H2S. Additionally, the absence of emission factor data for Sargassum decomposition on-site makes health risk assessments challenging. This study aimed to create a custom chamber to simulate real-world Sargassum decomposition, exposing experimental animals to the generated gases. Metal content was analyzed, and emission rates were estimated in a controlled environment. The decompositionexposure system replicated reported environmental gas emissions from the Caribbean region, except for NH3. H2S bursts were observed during the decomposition process at intervals of 2-10 days, with higher frequency associated with larger masses of decomposing Sargassum. The decomposed gas was transferred to the exposure chamber, resulting in an 80-87% reduction in H2S concentration. The maximum H2S emission was 156 ppm, with a concentration ranging from 50.4 to 56.5 ppm. An estimated emission rate of 7-8 g/h for H2S was observed, and significant levels of lead, arsenic, and aluminum were found in beached Sargassum from the northeast coast of Brazil. This study's developed model provides an opportunity to investigate the effects and risks to human health associated with exposure to gases produced during the environmental decomposition of Sargassum seaweed.
Palavras-chave
Sargassum seaweed, Exposure chamber, Hydrogen sulfide, Decomposition
Referências
  1. Alzate-Gaviria L, 2021, J MAR SCI ENG, V9, DOI 10.3390/jmse9010006
  2. ANSES-Agence nationale de securite sanitaire de l'alimentation de l'environnement et du travail, 2017, EXP EM ALG SARG DEC
  3. Arts JHE, 2008, EXP TOXICOL PATHOL, V60, P125, DOI 10.1016/j.etp.2008.01.011
  4. Benevenuto SG, 2017, TOXICOLOGY, V376, P94, DOI 10.1016/j.tox.2016.05.020
  5. Conama Conselho nacional do meio ambiente, 2005, RES CONAMA 357
  6. Conrad R, 1996, MICROBIOL REV, V60, P609, DOI 10.1128/MMBR.60.4.609-640.1996
  7. Conte L, 2019, BIOGEOSCIENCES, V16, P881, DOI 10.5194/bg-16-881-2019
  8. Coraçao ACD, 2020, J ENVIRON CHEM ENG, V8, DOI 10.1016/j.jece.2020.103941
  9. Escabi CD, 2019, J ACOUST SOC AM, V146, P3692, DOI 10.1121/1.5132553
  10. Fidai YA, 2020, ENVIRON RES COMMUN, V2, DOI 10.1088/2515-7620/abd109
  11. Gobert Tristan, 2022, Chemosphere, V308, P136186, DOI 10.1016/j.chemosphere.2022.136186
  12. Govindarajan AF, 2019, PEERJ, V7, DOI 10.7717/peerj.7814
  13. Han Q, 2020, POULTRY SCI, V99, P5378, DOI 10.1016/j.psj.2020.08.005
  14. Hu XY, 2019, CHEMOSPHERE, V237, DOI 10.1016/j.chemosphere.2019.124427
  15. Johns EM, 2020, PROG OCEANOGR, V182, DOI 10.1016/j.pocean.2020.102269
  16. Lapointe BE, 2019, GULF CARIBB RES, V30, pXVI, DOI 10.18785/gcr.3001.10
  17. Mattio L, 2011, BOT REV, V77, P31, DOI 10.1007/s12229-010-9060-x
  18. Merle H, 2021, AM J TROP MED HYG, V104, P403, DOI 10.4269/ajtmh.20-0636
  19. Milligan P, 2000, FEMS MICROBIOL ECOL, V34, P157, DOI 10.1111/j.1574-6941.2000.tb00765.x
  20. Ossola R, 2022, ENVIRON SCI TECHNOL, DOI 10.1021/acs.est.2c03762
  21. Phillips NLH, 2019, GENES-BASEL, V10, DOI 10.3390/genes10010047
  22. Resiere D, 2021, TOXICOL ANAL CLIN, V33, P216, DOI 10.1016/j.toxac.2021.05.003
  23. Resiere D, 2021, CLIN TOXICOL, V59, P215, DOI 10.1080/15563650.2020.1789162
  24. Resiere D, 2018, LANCET, V392, P2691, DOI 10.1016/S0140-6736(18)32777-6
  25. Robledo D, 2021, FRONT MAR SCI, V8, DOI 10.3389/fmars.2021.699664
  26. Rodríguez-Martínez RE, 2020, PEERJ, V8, DOI 10.7717/peerj.8667
  27. Sanchez-Rubio G, 2018, FISH B-NOAA, V116, P93, DOI 10.7755/FB.116.1.10
  28. Soares EC, 2021, MAR POLLUT BULL, V171, DOI 10.1016/j.marpolbul.2021.112723
  29. Soares MO, 2022, ENVIRON SCI POLLUT R, V29, P19869, DOI 10.1007/s11356-022-18710-4
  30. Song N, 2020, CHEMOSPHERE, V242, DOI 10.1016/j.chemosphere.2019.125155
  31. Stubbins A, 2008, ENVIRON SCI TECHNOL, V42, P3271, DOI 10.1021/es703014q
  32. Trinanes J, 2023, J OPER OCEANOGR, V16, P48, DOI 10.1080/1755876X.2021.1902682
  33. United Nations Environment Programme (UNEP)-Caribbean Environment Programme, 2021, 9 M SCI TECHN ADV CO
  34. Veras MM, 2008, BIOL REPROD, V79, P578, DOI 10.1095/biolreprod.108.069591
  35. Wang MQ, 2019, SCIENCE, V365, P83, DOI 10.1126/science.aaw7912