Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis?

Carregando...
Imagem de Miniatura
Citações na Scopus
77
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
BIOMED CENTRAL LTD
Autores
ESTEVES, Gustavo Henrique
KOYAMA, Fernanda Christtanini
DIAS, Marcos Vincius Salles
MACHADO, Flavia Ribeiro
SALOMAO, Reinaldo
Citação
CRITICAL CARE, v.22, article ID 68, 11p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Exosomes isolated from plasma of patients with sepsis may induce vascular apoptosis and myocardial dysfunction by mechanisms related to inflammation and oxidative stress. Despite previous studies demonstrating that these vesicles contain genetic material related to cellular communication, their molecular cargo during sepsis is relatively unknown. In this study, we evaluated the presence of microRNAs (miRNAs) and messenger RNAs (mRNAs) related to inflammatory response and redox metabolism in exosomes of patients with septic shock. Methods: Blood samples were collected from 24 patients with septic shock at ICU admission and after 7 days of treatment. Twelve healthy volunteers were used as control subjects. Exosomes were isolated by ultracentrifugation, and their miRNA and mRNA content was evaluated by qRT-PCR array. Results: As compared with healthy volunteers, exosomes from patients with sepsis had significant changes in 65 exosomal miRNAs. Twenty-eight miRNAs were differentially expressed, both at enrollment and after 7 days, with similar kinetics (18 miRNAs upregulated and 10 downregulated). At enrollment, 35 differentially expressed miRNAs clustered patients with sepsis according to survival. The pathways enriched by the miRNAs of patients with sepsis compared with control subjects were related mostly to inflammatory response. The comparison of miRNAs from patients with sepsis according to hospital survival demonstrated pathways related mostly to cell cycle regulation. At enrollment, sepsis was associated with significant increases in the expression of mRNAs related to redox metabolism (myeloperoxidase, 64-fold; PRDX3, 2.6-fold; SOD2, 2.2-fold) and redox-responsive genes (FOXM1, 21-fold; SELS, 16-fold; GLRX2, 3.4-fold). The expression of myeloperoxidase mRNA remained elevated after 7 days (65-fold). Conclusions: Exosomes from patients with septic shock convey miRNAs and mRNAs related to pathogenic pathways, including inflammatory response, oxidative stress, and cell cycle regulation. Exosomes may represent a novel mechanism for intercellular communication during sepsis.
Palavras-chave
Sepsis, Extracellular vesicles, Exosomes, MicroRNAs, Messenger RNA, Inflammatory response, Oxidative stress
Referências
  1. Angus DC, 2001, CRIT CARE MED, V29, P1303, DOI 10.1097/00003246-200107000-00002
  2. Angus Derek C., 2006, Endocrine Metabolic & Immune Disorders-Drug Targets, V6, P207
  3. Azevedo L. C. P., 2006, Endocrine Metabolic & Immune Disorders-Drug Targets, V6, P159
  4. Azevedo Luciano C P, 2007, Recent Pat Cardiovasc Drug Discov, V2, P41, DOI 10.2174/157489007779606121
  5. Benz F, 2015, DIS MARKERS, DOI 10.1155/2015/384208
  6. BONE RC, 1992, CHEST, V101, P1481, DOI 10.1378/chest.101.6.1481
  7. Bowen T, 2013, J PATHOL, V229, P274, DOI 10.1002/path.4119
  8. Cunniff B, 2014, REDOX BIOL, V3, P79, DOI 10.1016/j.redox.2014.11.003
  9. Essandoh K, 2014, BBA-MOL BASIS DIS, V1842, P2155, DOI 10.1016/j.bbadis.2014.07.021
  10. Fan HK, 2014, AM J RESP CRIT CARE, V189, P1509, DOI 10.1164/rccm.201312-2163OC
  11. Fernandez-Messina L, 2015, BIOL CELL, V107, P61, DOI 10.1111/boc.201400081
  12. Ferry G, 2005, BIOCHEM J, V388, P205, DOI 10.1042/BJ20042075
  13. Gambim MH, 2007, CRIT CARE, V11, DOI 10.1186/cc6133
  14. Goodwin AJ, 2015, CRIT CARE, V19, DOI 10.1186/s13054-015-1162-8
  15. Huang XL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044301
  16. Huang XY, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-319
  17. Hunter MP, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003694
  18. Janiszewski M, 2004, CRIT CARE MED, V32, P818, DOI 10.1097/01.CCM.0000114829.17746.19
  19. Bueno MJ, 2011, BBA-MOL BASIS DIS, V1812, P592, DOI 10.1016/j.bbadis.2011.02.002
  20. Kashani K, 2013, CRIT CARE, V17, DOI 10.1186/cc12503
  21. Khalid U, 2014, BIOCHEM SOC T, V42, P1219, DOI 10.1042/BST20140093
  22. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  23. Lv LL, 2013, AM J PHYSIOL-RENAL, V305, pF1220, DOI 10.1152/ajprenal.00148.2013
  24. Navarro IC, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003828
  25. Conde KAP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064790
  26. Azevedo LCP, 2007, CRIT CARE, V11, DOI 10.1186/cc6176
  27. Price PM, 2003, SEMIN NEPHROL, V23, P449, DOI 10.1016/S0270-9295(03)00087-1
  28. Reid VL, 2012, BRIT J ANAESTH, V109, P503, DOI 10.1093/bja/aes321
  29. Reithmair M, 2017, J CELL MOL MED, V21, P2403, DOI 10.1111/jcmm.13162
  30. Roderburg C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054612
  31. Salomao R, 2012, SHOCK, V38, P227, DOI 10.1097/SHK.0b013e318262c4b0
  32. Srinivasan V, 2010, J CRIT CARE, V25
  33. Taniguchi LU, 2014, CRIT CARE, V18, DOI 10.1186/s13054-014-0608-8
  34. Terrasini N, 2017, CRIT CARE MED, V45, P1054, DOI 10.1097/CCM.0000000000002328
  35. Trajkovic K, 2008, SCIENCE, V319, P1244, DOI 10.1126/science.1153124
  36. Uhlich RM, 2014, SURGERY, V156, P834, DOI 10.1016/j.surg.2014.06.017
  37. Valadi H, 2007, NAT CELL BIOL, V9, P654, DOI 10.1038/ncb1596
  38. Ximenes VF, 2005, J BIOL CHEM, V280, P38160, DOI 10.1074/jbc.M506384200
  39. Yang QH, 2011, INFLAMM RES, V60, P783, DOI 10.1007/s00011-011-0334-5
  40. Yang QH, 2009, J INFECTION, V58, P459, DOI 10.1016/j.jinf.2009.04.003
  41. Yende S, 2008, AM J RESP CRIT CARE, V177, P1242, DOI 10.1164/rccm.200712-1777OC
  42. Zhao YY, 2006, J CLIN INVEST, V116, P2333, DOI 10.1172/JCI27154