Exploring the Role of Alcohol Metabolizing Genotypes in a 12-Week Clinical Trial of Naltrexone for Alcohol Use Disorder

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
BIOMOLECULES, v.11, n.10, article ID 1495, 10p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The efficacy of naltrexone in the treatment of alcohol use disorder (AUD) has been associated with a set of variables not directly related with the expression of opioid receptors. All the variables have been found to be highly associated with AUD itself or more severe clinical levels of AUD. Objectives: Given the high association between alcohol metabolizing enzymes (AME) and the outcome of AUD, the present study aims to investigate the role of AME genotype variants in the treatment of AUD with naltrexone. Methods: We carried out a 12-week longitudinal clinical trial based on the treatment of AUD patients with naltrexone (N = 101), stratified by different alcohol metabolization genotypes. Genotyping was performed after the inclusion of the patients in the study, based on the individual presence of single nucleotide polymorphisms (SNPs) in the ADH (alcohol dehydrogenase)1B (ADH1B*2 and ADH1B*3), ADH1C (ADHC*1) and ALDH (aldehyde dehydrogenase) 2 (ALDH2*2) genes. The outcome of alcohol use has been monitored employing the timeline follow-back during the treatment. Results: The ADH1C*1 (Ile350Val, rs698) and ALDH2*2 (Glu504Lys, rs671) polymorphisms were associated with a better response to naltrexone treatment, whereas the ADH1B*3 (Arg370Cys, rs2066702) allelic variant showed a negative outcome. Conclusions: The present study explores a genomic setting for the treatment of AUD with naltrexone. According to our findings, the association between ADH1C*1 and ALDH2*2 variants and better outcomes suggests a successful treatment, whereas the ADH1B*3 mutated allele might lead to an unsuccessful treatment. Further studies should be performed to investigate the relationship between alcohol metabolizing genotypes, the family history of alcohol use disorders and the effect of naltrexone on the outcomes. Genotyping may be a valuable tool for precision-medicine and individualized approach, especially in the context of alcohol use disorders. The small number of subjects was the main limitation of the present study.</p>
Palavras-chave
alcohol, naltrexone, genotyping, ADH1B, ADH1C, ALDH2
Referências
  1. [Anonymous], 2020, INJURY PREV, DOI 10.1136/injuryprev-2019-043531
  2. Bernhardt N, 2017, ALCOHOL CLIN EXP RES, V41, P1794, DOI 10.1111/acer.13481
  3. Bierut LJ, 2012, MOL PSYCHIATR, V17, P445, DOI 10.1038/mp.2011.124
  4. Brunoni AR, 2020, BRAZ J PSYCHIAT, V42, P128, DOI 10.1590/1516-4446-2019-0620
  5. Bujarski S, 2015, J STUD ALCOHOL DRUGS, V76, P690
  6. Castaldelli-Maia J M, 2019, Ir J Psychol Med, P1, DOI 10.1017/ipm.2019.19
  7. Castaldelli-Maia JM, 2015, DRUG ALCOHOL DEPEN, V152, P123, DOI 10.1016/j.drugalcdep.2015.04.024
  8. Castaldelli-Maia JM, 2014, DRUG ALCOHOL DEPEN, V136, P92, DOI 10.1016/j.drugalcdep.2013.12.012
  9. Chen CC, 2004, ADDICT BIOL, V9, P233, DOI 10.1080/13556210412331292550
  10. Crawford A, 2014, METAB BRAIN DIS, V29, P333, DOI 10.1007/s11011-014-9503-x
  11. Degenhardt L, 2018, LANCET PSYCHIAT, V5, P987, DOI 10.1016/S2215-0366(18)30337-7
  12. Ducci F, 2012, PSYCHIAT CLIN N AM, V35, P495, DOI 10.1016/j.psc.2012.03.010
  13. Edenberg HJ, 2018, ALCOHOL CLIN EXP RES, V42, P2281, DOI 10.1111/acer.13904
  14. Enoch MA, 2014, PHARMACOL BIOCHEM BE, V123, P17, DOI 10.1016/j.pbb.2013.11.001
  15. Fairbanks J, 2020, MAYO CLIN PROC, V95, P1964, DOI 10.1016/j.mayocp.2020.01.030
  16. Fond G, 2021, EUR ARCH PSY CLIN N, V271, P883, DOI 10.1007/s00406-020-01122-1
  17. Garbutt JC, 2014, ADDICTION, V109, P1274, DOI 10.1111/add.12557
  18. Gelernter J, 2019, BIOL PSYCHIAT, V86, P365, DOI 10.1016/j.biopsych.2019.03.984
  19. Griswold MG, 2018, LANCET, V392, P1015, DOI [10.1016/S0140-6736(18)31310-2, 10.1016/s0140-6736(18)31310-2, 10.1016/S0140-6736(16)31679-8]
  20. Hartwell EE, 2020, ADDICTION, V115, P1426, DOI 10.1111/add.14975
  21. Hendershot CS, 2020, ALCOHOL CLIN EXP RES, V44, P983, DOI 10.1111/acer.14300
  22. Jacobson SW, 2018, ALCOHOL CLIN EXP RES, V42, P1315, DOI 10.1111/acer.13768
  23. Kahler CW, 2018, J CONSULT CLIN PSYCH, V86, P645, DOI 10.1037/ccp0000322
  24. Kim Sung-Gon, 2009, Japanese Journal of Alcohol Studies & Drug Dependence, V44, P680
  25. Lai DB, 2019, GENES BRAIN BEHAV, V18, DOI 10.1111/gbb.12579
  26. Li DW, 2011, BIOL PSYCHIAT, V70, P504, DOI 10.1016/j.biopsych.2011.02.024
  27. Luczak SE, 2006, PSYCHOL BULL, V132, P607, DOI 10.1037/0033-2909.132.4.607
  28. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  29. Oluwoye O, 2018, INT J MENT HEALTH AD, V16, P672, DOI 10.1007/s11469-017-9821-4
  30. Park B, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-62361-9
  31. Park CI, 2021, EUR ARCH PSY CLIN N, V271, P865, DOI 10.1007/s00406-019-01072-3
  32. Ray LA, 2012, NEUROPSYCHOPHARMACOL, V37, P445, DOI 10.1038/npp.2011.192
  33. Reus VI, 2018, AM J PSYCHIAT, V175, P86, DOI 10.1176/appi.ajp.2017.1750101
  34. Rosner S, 2010, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD001867.pub2, 10.1002/14651858.CD001867.pub3]
  35. Sakaue S, 2020, EUR J HUM GENET, V28, P378, DOI 10.1038/s41431-019-0518-y
  36. Sanchez-Roige S, 2020, BIOL PSYCHIAT, V87, P609, DOI 10.1016/j.biopsych.2019.09.011
  37. Schacht JP, 2017, NEUROPSYCHOPHARMACOL, V42, P2640, DOI 10.1038/npp.2017.74
  38. Schacht JP, 2013, NEUROPSYCHOPHARMACOL, V38, P414, DOI 10.1038/npp.2012.195
  39. Setodji CM, 2018, DRUG ALCOHOL DEPEN, V192, P67, DOI 10.1016/j.drugalcdep.2018.07.027
  40. Shin S, 2010, INT J GERIATR PSYCH, V25, P441, DOI 10.1002/gps.2358
  41. Shiotani Akiko, 2019, Asian Pac J Cancer Prev, V20, P795, DOI 10.31557/APJCP.2019.20.3.795
  42. Simon J, 2020, FRONT HUM NEUROSCI, V14, DOI 10.3389/fnhum.2020.00124
  43. Smart R, 2018, DRUG ALCOHOL DEPEN, V191, P187, DOI 10.1016/j.drugalcdep.2018.07.005
  44. Srisurapanont M, 2005, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD1867.pub2
  45. Staudt A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0217595
  46. Stewart SH, 2019, J SUBST ABUSE TREAT, V104, P7, DOI 10.1016/j.jsat.2019.05.004
  47. Sun Y, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0586-3
  48. Thompson A, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aay5034
  49. van der Schans J, 2019, J CLIN PSYCHOPHARM, V39, P583, DOI 10.1097/JCP.0000000000001129
  50. van Westrenhen R, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.00094
  51. Verholleman A, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21083002
  52. Wang JC, 2007, ALCOHOL CLIN EXP RES, V31, P209, DOI 10.1111/j.1530-0277.2006.00297.x
  53. Watkins KE, 2017, JAMA INTERN MED, V177, P1480, DOI 10.1001/jamainternmed.2017.3947
  54. Yasumizu Y, 2020, MOL BIOL EVOL, V37, P1306, DOI 10.1093/molbev/msaa005
  55. Yokoyama A, 2020, PHARMACOGENET GENOM, V30, P54, DOI 10.1097/FPC.0000000000000395
  56. Yu HS, 2010, CHEM-BIOL INTERACT, V188, P367, DOI 10.1016/j.cbi.2010.08.005
  57. Zaso MJ, 2019, ALCOHOL ALCOHOLISM, V54, P216, DOI 10.1093/alcalc/agz011
  58. Zill JM, 2019, DTSCH ARZTEBL INT, V116, P127, DOI 10.3238/arztebl.2019.0127