Downregulation of miR-29b is associated with Peyronie's disease

Nenhuma Miniatura disponível
Citações na Scopus
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Citação
UROLOGIA JOURNAL, v.89, n.3, p.451-455, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Peyronie's disease (PD) is characterized by the formation of fibrous plaque in tunica albuginea, causing several problems in patients. The etiology of this disease is not fully understood, and there are few effective treatments. To better understand the molecular pathways of PD, we studied miR-29b, a microRNA that could be involved with this illness. MicroRNAs are endogenous molecules that act by inhibiting messenger RNA. MiR-29b regulates 11 of 20 collagen genes and the TGF-beta 1 gene, which are related to PD progression. Methods: We compared miR-29b expression in 11 patients with PD and 14 patients without PD (control group). For the patients with PD, we utilized samples from the fibrous plaque (n = 9), from the tunica albuginea (n = 11), and from the corpus cavernosum (n = 8). For the control group, we utilized samples from the tunica albuginea (n = 14) and from the corpus cavernosum (n = 10). MiR-29b expression was determined by q-PCR. Results: We found a downregulation of miR-29b in the fibrous plaque, tunica albuginea and corpus cavernosum of patients with PD in comparison with the control group (p = 0.0484, p = 0.0025, and p = 0.0016, respectively). Conclusion: Although our study has a small sample, we showed for the first time an evidence that the downregulation of miR-29b is associated with PD.
Palavras-chave
Peyronie's disease, microRNA, miR-29b
Referências
  1. Cai Yimei, 2009, Genomics Proteomics & Bioinformatics, V7, P147, DOI 10.1016/S1672-0229(08)60044-3
  2. Camelo A, 2016, ACTA UROLOGICA PORTU, V33, P75
  3. Cao W, 2019, BIOL RES, V52, DOI 10.1186/s40659-019-0260-5
  4. Cushing L, 2011, AM J RESP CELL MOL, V45, P287, DOI 10.1165/rcmb.2010-0323OC
  5. ElSakka AI, 1997, J UROLOGY, V158, P1391, DOI 10.1016/S0022-5347(01)64223-X
  6. Gelbard M, 2013, J UROLOGY, V190, P199, DOI 10.1016/j.juro.2013.01.087
  7. Haag SM, 2007, EUR UROL, V51, P255, DOI 10.1016/j.eururo.2006.05.002
  8. He Y, 2013, BIOCHIMIE, V95, P1355, DOI 10.1016/j.biochi.2013.03.010
  9. Hyun J, 2014, J MOL HISTOL, V45, P103, DOI 10.1007/s10735-013-9532-5
  10. Ivanovic RF, 2018, CANCER CELL INT, V18, DOI 10.1186/s12935-018-0516-0
  11. Katz D, 2019, MED SCI BASEL, V7, P2019
  12. Kriegel AJ, 2012, PHYSIOL GENOMICS, V44, P237, DOI 10.1152/physiolgenomics.00141.2011
  13. Li JX, 2016, MOL MED REP, V13, P4229, DOI 10.3892/mmr.2016.5062
  14. Luna C, 2011, INVEST OPHTH VIS SCI, V52, P3567, DOI 10.1167/iovs.10-6448
  15. Luna C, 2009, MOL VIS, V15, P2488
  16. Milenkovic U, 2019, SEX MED REV, V7, P679, DOI 10.1016/j.sxmr.2019.02.004
  17. Qin W, 2011, J AM SOC NEPHROL, V22, P1462, DOI 10.1681/ASN.2010121308
  18. Roderburg C, 2011, HEPATOLOGY, V53, P209, DOI 10.1002/hep.23922
  19. Steele Robert, 2010, Genes Cancer, V1, P381
  20. Taylor FL, 2007, UROL CLIN N AM, V34, P517, DOI 10.1016/j.ucl.2007.08.017
  21. van Rooij E, 2008, P NATL ACAD SCI USA, V105, P13027, DOI 10.1073/pnas.0805038105