Automatic isotropic fractionation for large-scale quantitative cell analysis of nervous tissue

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
AZEVEDO, Frederico A. C.
ANDRADE-MORAES, Carlos H.
CURADO, Marco R.
OLIVEIRA-PINTO, Ana V.
GUIMARAES, Daniel M.
SZCZUPAK, Diego
GOMES, Bruna V.
Citação
JOURNAL OF NEUROSCIENCE METHODS, v.212, n.1, p.72-78, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Isotropic fractionation is a quantitative technique that allows reliable estimates of absolute numbers of neuronal and non-neuronal brain cells. However, being fast for single small brains, it requires a long time for processing large brains or many small ones, if done manually. To solve this problem, we developed a machine to automate the method, and tested its efficiency, consistency, and reliability as compared with manual processing. The machine consists of a set of electronically controlled rotation and translation motors coupled to tissue grinders, which automatically transform fixed tissue into homogeneous nuclei suspensions. Speed and torque of the motors can be independently regulated by electronic circuits, according to the volume of tissue being processed and its mechanical resistance to fractionation. To test the machine, twelve paraformaldehyde-fixed rat brains and eight human cerebella were separated into two groups, respectively: one processed automatically and the other, manually. Both pairs of groups (rat and human tissue) followed the same, published protocol of the method. We compared the groups according to nuclei morphology, degree of clustering and number of cells. The machine proved superior for yielding faster results due to simultaneous processing in multiple grinders. Quantitative analysis of machine-processed tissue resulted in similar average numbers of total brain cells, neurons, and non-neuronal cells, statistically similar to the manually processed tissue and equivalent to previously published data. We concluded that the machine is more efficient because it utilizes many homogenizers simultaneously, equally consistent in producing high quality material for counting, and quantitatively reliable as compared to manual processing.
Palavras-chave
Quantitative neuroanatomy, Isotropic fractionator, Neuronal number, Brain cell number
Referências
  1. Andersen BB, 2003, J COMP NEUROL, V466, P356, DOI 10.1002/cne.10884
  2. ANDERSEN BB, 1992, J COMP NEUROL, V326, P549, DOI 10.1002/cne.903260405
  3. Andersen K, 2012, NEUROBIOL AGING, V33
  4. Azevedo FAC, 2009, J COMP NEUROL, V513, P532, DOI 10.1002/cne.21974
  5. Bandeira F, 2009, P NATL ACAD SCI USA, V106, P14108, DOI 10.1073/pnas.0804650106
  6. Benes FM, 2001, TRENDS NEUROSCI, V24, P11, DOI 10.1016/S0166-2236(00)01660-X
  7. Bundgaard MJ, 2001, J ANAT, V198, P481, DOI 10.1046/j.1469-7580.2001.19840481.x
  8. Collins CE, 2010, FRONT NEUROANAT, V4, DOI 10.3389/neuro.05.005.2010
  9. Farel Paul B., 2002, Anatomical Record, V269, P157, DOI 10.1002/ar.10111
  10. Hayashi Y, 2011, MOL PSYCHIATR, V16, P1156, DOI 10.1038/mp.2011.84
  11. Herculano-Houzel S, 2005, J NEUROSCI, V25, P2518, DOI 10.1523/JNEUROSCI.4526-04.2005
  12. Herculano-Houzel S, 2007, P NATL ACAD SCI USA, V104, P3562, DOI 10.1073/pnas.0611396104
  13. Herculano-Houzel S, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00012
  14. Herculano-Houzel S, 2011, BRAIN BEHAV EVOLUT, V77, P33, DOI 10.1159/000322729
  15. Herculano-Houzel S, 2006, P NATL ACAD SCI USA, V103, P12138, DOI 10.1073/pnas.0604911103
  16. Hilgetag CC, 2009, BRAIN STRUCT FUNCT, V213, P365, DOI 10.1007/s00429-009-0202-z
  17. Kumar SS, 2007, BRAIN RES, V1142, P54, DOI 10.1016/j.brainres.2007.01.027
  18. LANGE W, 1975, CELL TISSUE RES, V157, P115
  19. Lent R, 2012, EUR J NEUROSCI, V35, P1, DOI 10.1111/j.1460-9568.2011.07923.x
  20. Long JM, 1999, J GERONTOL A-BIOL, V54, pB407, DOI 10.1093/gerona/54.10.B407
  21. MULLEN RJ, 1992, DEVELOPMENT, V116, P201
  22. Ohm TG, 1997, NEUROBIOL AGING, V18, P393, DOI 10.1016/S0197-4580(97)00034-1
  23. OKUSKY J, 1982, J COMP NEUROL, V210, P278, DOI 10.1002/cne.902100307
  24. Pakkenberg B, 1997, J COMP NEUROL, V384, P312, DOI 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K
  25. Pakkenberg B, 2003, EXP GERONTOL, V38, P95, DOI 10.1016/S0531-5565(02)00151-1
  26. PAKKENBE.H, 1966, J COMP NEUROL, V128, P17, DOI 10.1002/cne.901280103
  27. Pelvig DP, 2008, NEUROBIOL AGING, V29, P1754, DOI 10.1016/j.neurobiolaging.2007.04.013
  28. Poth C, 2005, BRAIN RES BULL, V66, P357, DOI 10.1016/j.brainresbull.2005.02.001
  29. Sarko DK, 2009, FRONT NEUROANAT, V3
  30. Sarnat HB, 1998, BRAIN DEV-JPN, V20, P88, DOI 10.1016/S0387-7604(97)00111-3
  31. Schmitz C, 2005, NEUROSCIENCE, V130, P813, DOI 10.1016/j.neuroscience.2004.08.050
  32. Simic G, 1997, J COMP NEUROL, V379, P482, DOI 10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z
  33. von Bartheld CS, 2001, TRENDS NEUROSCI, V24, P504, DOI 10.1016/S0166-2236(00)01960-3
  34. Wolf HK, 1996, J HISTOCHEM CYTOCHEM, V44, P1167