Before and after AlphaFold2: An overview of protein structure prediction

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorBERTOLINE, Leticia M. F.
dc.contributor.authorLIMA, Angelica N.
dc.contributor.authorKRIEGER, Jose E.
dc.contributor.authorTEIXEIRA, Samantha K.
dc.date.accessioned2023-12-15T18:45:26Z
dc.date.available2023-12-15T18:45:26Z
dc.date.issued2023
dc.description.abstractThree-dimensional protein structure is directly correlated with its function and its determination is critical to understanding biological processes and addressing human health and life science problems in general. Although new protein structures are experimentally obtained over time, there is still a large difference between the number of protein sequences placed in Uniprot and those with resolved tertiary structure. In this context, studies have emerged to predict protein structures by methods based on a template or free modeling. In the last years, different methods have been combined to overcome their individual limitations, until the emergence of AlphaFold2, which demonstrated that predicting protein structure with high accuracy at unprecedented scale is possible. Despite its current impact in the field, AlphaFold2 has limitations. Recently, new methods based on protein language models have promised to revolutionize the protein structural biology allowing the discovery of protein structure and function only from evolutionary patterns present on protein sequence. Even though these methods do not reach AlphaFold2 accuracy, they already covered some of its limitations, being able to predict with high accuracy more than 200 million proteins from metagenomic databases. In this mini-review, we provide an overview of the breakthroughs in protein structure prediction before and after AlphaFold2 emergence.eng
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [INCT-2014/50889-7]
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq [INCT-465586/2014-7]
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior-CAPES [PROEX-169192/2018-0]
dc.description.sponsorshipZerbini Foundation
dc.description.sponsorshipFoxconn Brazil
dc.identifier.citationFRONTIERS IN BIOINFORMATICS, v.3, article ID 1120370, 8p, 2023
dc.identifier.doi10.3389/fbinf.2023.1120370
dc.identifier.eissn2673-7647
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/57375
dc.language.isoeng
dc.publisherFRONTIERS MEDIA SAeng
dc.relation.ispartofFrontiers in Bioinformatics
dc.rightsopenAccesseng
dc.rights.holderCopyright FRONTIERS MEDIA SAeng
dc.subjectprotein structure predictioneng
dc.subjectAlphaFoldeng
dc.subjecttemplate-based modelingeng
dc.subjectfree modelingeng
dc.subjectprotein language modeleng
dc.subject.otherfold recognitioneng
dc.subject.wosMathematical & Computational Biologyeng
dc.titleBefore and after AlphaFold2: An overview of protein structure predictioneng
dc.typearticleeng
dc.type.categoryrevieweng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.citation.scopus29
hcfmusp.contributor.author-fmusphcLETICIA MACHADO FAVERY BERTOLINE
hcfmusp.contributor.author-fmusphcANGELICA NAKAGAWA LIMA
hcfmusp.contributor.author-fmusphcJOSE EDUARDO KRIEGER
hcfmusp.contributor.author-fmusphcSAMANTHA KUWADA TEIXEIRA
hcfmusp.description.articlenumber1120370
hcfmusp.description.volume3
hcfmusp.origemWOS
hcfmusp.origem.pubmed36926275
hcfmusp.origem.scopus2-s2.0-85153708123
hcfmusp.origem.wosWOS:001087603700001
hcfmusp.publisher.cityLAUSANNEeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAgnihotry S., 2022, Bioinforma.: Methods Appl., P177, DOI 10.1016/B978-0-323-89775-4.00023-7eng
hcfmusp.relation.reference[Anonymous], 2005, Principles of Biochemistryeng
hcfmusp.relation.referenceAzzaz F, 2022, BIOMOLECULES, V12, DOI 10.3390/biom12101527eng
hcfmusp.relation.referenceBepler T, 2021, CELL SYST, V12, P654, DOI 10.1016/j.cels.2021.05.017eng
hcfmusp.relation.referenceBongirwar V, 2022, PROG BIOPHYS MOL BIO, V173, P72, DOI 10.1016/j.pbiomolbio.2022.05.002eng
hcfmusp.relation.referenceBouatta N, 2021, ACTA CRYSTALLOGR D, V77, P982, DOI 10.1107/S2059798321007531eng
hcfmusp.relation.referenceBryant P, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28865-weng
hcfmusp.relation.referenceBuel GR, 2022, NAT STRUCT MOL BIOL, V29, P1, DOI 10.1038/s41594-021-00714-2eng
hcfmusp.relation.referenceCallaway E, 2022, NATURE, V604, P234, DOI 10.1038/d41586-022-00997-5eng
hcfmusp.relation.referenceDill KA, 2007, CURR OPIN STRUC BIOL, V17, P342, DOI 10.1016/j.sbi.2007.06.001eng
hcfmusp.relation.referenceDorn M, 2014, COMPUT BIOL CHEM, V53, P251, DOI 10.1016/j.compbiolchem.2014.10.001eng
hcfmusp.relation.referenceDuran-Frigola M, 2013, CHEM BIOL, V20, P674, DOI 10.1016/j.chembiol.2013.03.004eng
hcfmusp.relation.referenceEvans R., 2021, bioRxiv, DOI [DOI 10.1101/2021.10.04.463034, 10.04.463034]eng
hcfmusp.relation.referenceFRUTON JS, 1985, P AM PHILOS SOC, V129, P313eng
hcfmusp.relation.referenceGromiha M. M., 2019, Encycl. Bioinforma. Comput. Biol. ABC Bioinforma, P445, DOI 10.1016/B978-0-12-809633-8.20278-1eng
hcfmusp.relation.referenceGuex N, 2009, ELECTROPHORESIS, V30, pS162, DOI 10.1002/elps.200900140eng
hcfmusp.relation.referenceHardin C, 2002, CURR OPIN STRUC BIOL, V12, P176, DOI 10.1016/S0959-440X(02)00306-8eng
hcfmusp.relation.referenceHazra S., 2021, Importance of protein structure and function in pathogenesis: Highlights on the multifaceted organism Mycobacterium tuberculosis, DOI [10.1016/b978-0-12-820084-1.00030-2, DOI 10.1016/B978-0-12-820084-1.00030-2]eng
hcfmusp.relation.referenceHekkelman ML, 2023, NAT METHODS, V20, P205, DOI 10.1038/s41592-022-01685-yeng
hcfmusp.relation.referenceHiggins MK, 2021, J MOL BIOL, V433, DOI 10.1016/j.jmb.2021.167093eng
hcfmusp.relation.referenceJohansson-Åkhe I, 2022, FRONT BIOINFORM, V2, DOI 10.3389/fbinf.2022.959160eng
hcfmusp.relation.referenceJones DT, 1999, J MOL BIOL, V287, P797, DOI 10.1006/jmbi.1999.2583eng
hcfmusp.relation.referenceJumper J, 2021, PROTEINS, V89, P1711, DOI 10.1002/prot.26257eng
hcfmusp.relation.referenceJumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2eng
hcfmusp.relation.referenceKiefer F, 2009, NUCLEIC ACIDS RES, V37, pD387, DOI 10.1093/nar/gkn750eng
hcfmusp.relation.referenceKryshtafovych A, 2019, PROTEINS, V87, P1011, DOI 10.1002/prot.25823eng
hcfmusp.relation.referenceLin ZM, 2022, bioRxiv, DOI [10.1101/2022.07.20.500902, 10.1101/2022.07.20.500902, DOI 10.1101/2022.07.20.500902]eng
hcfmusp.relation.referenceMirdita M, 2022, NAT METHODS, V19, P679, DOI [10.1038/s41592-022-01488-1, 10.5281/ZENODO.5123297]eng
hcfmusp.relation.referenceNassar R, 2021, J MOL BIOL, V433, DOI 10.1016/j.jmb.2021.167126eng
hcfmusp.relation.referenceNoone DP, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2208144119eng
hcfmusp.relation.referenceOxford Protein Informatics Group, 2021, AlphaFold 2 is here: what's behind the structure prediction miracleeng
hcfmusp.relation.referencePaiva VD, 2022, COMPUT BIOL MED, V147, DOI 10.1016/j.compbiomed.2022.105695eng
hcfmusp.relation.referencePak M., 2021, bioRxiv, DOI [DOI 10.1101/2021.09.19.460937V1, 10.1101/2021.09.19.460937, DOI 10.1101/2021.09.19.460937]eng
hcfmusp.relation.referencePearce R, 2021, J BIOL CHEM, V297, DOI 10.1016/j.jbc.2021.100870eng
hcfmusp.relation.referencePerrakis A, 2021, EMBO REP, V22, DOI 10.15252/embr.202154046eng
hcfmusp.relation.referencePorta-Pardo E, 2022, PLOS COMPUT BIOL, V18, DOI 10.1371/journal.pcbi.1009818eng
hcfmusp.relation.referenceRost B, 1997, J MOL BIOL, V270, P471, DOI 10.1006/jmbi.1997.1101eng
hcfmusp.relation.referenceRuff KM, 2021, J MOL BIOL, V433, DOI 10.1016/j.jmb.2021.167208eng
hcfmusp.relation.referenceSaldaño T, 2022, BIOINFORMATICS, V38, P2742, DOI 10.1093/bioinformatics/btac202eng
hcfmusp.relation.referenceSanjeevi M., 2022, Methods and applications of machine learning in structure-based drug discovery, DOI [10.1016/B978-0-323-90264-9.00025-8, DOI 10.1016/B978-0-323-90264-9.00025-8]eng
hcfmusp.relation.referenceScardino V, 2023, ISCIENCE, V26, DOI 10.1016/j.isci.2022.105920eng
hcfmusp.relation.referenceSenior AW, 2020, NATURE, V577, P706, DOI 10.1038/s41586-019-1923-7eng
hcfmusp.relation.referenceSenior AW, 2019, PROTEINS, V87, P1141, DOI 10.1002/prot.25834eng
hcfmusp.relation.referenceSkolnick J, 2021, J CHEM INF MODEL, V61, P4827, DOI 10.1021/acs.jcim.1c01114eng
hcfmusp.relation.referenceStevens AO, 2022, BIOMOLECULES, V12, DOI 10.3390/biom12070985eng
hcfmusp.relation.referenceTerwilliger TC, 2022, NAT METHODS, V19, P1376, DOI 10.1038/s41592-022-01645-6eng
hcfmusp.relation.referenceVaradi M, 2023, PROTEOMICS, V23, DOI 10.1002/pmic.202200128eng
hcfmusp.relation.referenceVaradi M, 2022, NUCLEIC ACIDS RES, V50, pD439, DOI 10.1093/nar/gkab1061eng
hcfmusp.relation.referenceVoet D., 2014, Fundamental of biochemistry: Life at the molecular level, V4th editioeng
hcfmusp.relation.referenceWeissenow K., 2022, Ultra-fast protein structure prediction to capture effects of sequence variation in mutation movies, P1, DOI [10.1101/2022.11.14.516473, DOI 10.1101/2022.11.14.516473]eng
hcfmusp.relation.referenceWeissenow K, 2022, STRUCTURE, V30, P1169, DOI 10.1016/j.str.2022.05.001eng
hcfmusp.relation.referenceWisniak J., 2000, Chem. Educ, V5, P343, DOI [10.1007/s00897000430a, DOI 10.1007/S00897000430A]eng
hcfmusp.relation.referenceWong F, 2022, MOL SYST BIOL, V18, DOI 10.15252/msb.202211081eng
hcfmusp.relation.referenceXu D, 2012, PROTEINS, V80, P1715, DOI 10.1002/prot.24065eng
hcfmusp.relation.referenceYang JY, 2020, P NATL ACAD SCI USA, V117, P1496, DOI 10.1073/pnas.1914677117eng
hcfmusp.relation.referenceYin R, 2022, PROTEIN SCI, V31, DOI 10.1002/pro.4379eng
hcfmusp.relation.referenceYuan X, 2003, COMP FUNCT GENOM, V4, P397, DOI 10.1002/cfg.305eng
hcfmusp.scopus.lastupdate2024-04-12
relation.isAuthorOfPublication2dc5c5fe-9c9d-44f9-b77d-613a1304c803
relation.isAuthorOfPublication749ac9f2-67ae-4a45-a20d-04e7d5161e1e
relation.isAuthorOfPublicationa970d450-bcd4-4662-94d6-ad1c6d043b3c
relation.isAuthorOfPublicationdbe473c4-4dd0-44b1-a9c1-cd4ac6f586a6
relation.isAuthorOfPublication.latestForDiscovery2dc5c5fe-9c9d-44f9-b77d-613a1304c803
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_BERTOLINE_Before_and_after_AlphaFold2_An_overview_of_protein_2023.PDF
Tamanho:
1.22 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)