Integrating artificial intelligence and wing geometric morphometry to automate mosquito classification

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorLIMA, Vinicio Rodrigues de
dc.contributor.authorMORAIS, Mauro Cesar Cafundo de
dc.contributor.authorKIRCHGATTER, Karin
dc.date.accessioned2024-02-15T14:54:10Z
dc.date.available2024-02-15T14:54:10Z
dc.date.issued2024
dc.description.abstractMosquitoes (Diptera: Culicidae) comprise over 3500 global species, primarily in tropical regions, where the females act as disease vectors. Thus, identifying medically significant species is vital. In this context, Wing Geometric Morphometry (WGM) emerges as a precise and accessible method, excelling in species differentiation through mathematical approaches. Computational technologies and Artificial Intelligence (AI) promise to overcome WGM challenges, supporting mosquito identification. AI explores computers' thinking capacity, originating in the 1950s. Machine Learning (ML) arose in the 1980s as a subfield of AI, and deep Learning (DL) characterizes ML's subcategory, featuring hierarchical data processing layers. DL relies on data volume and layer adjustments. Over the past decade, AI demonstrated potential in mosquito identification. Various studies employed optical sensors, and Convolutional Neural Networks (CNNs) for mosquito identification, achieving average accuracy rates between 84 % and 93 %. Furthermore, larval Aedes identification reached accuracy rates of 92 % to 94 % using CNNs. DL models such as ResNet50 and VGG16 achieved up to 95 % accuracy in mosquito identification. Applying CNNs to georeference mosquito photos showed promising results. AI algorithms automated landmark detection in various insects' wings with repeatability rates exceeding 90 %. Companies have developed wing landmark detection algorithms, marking significant advancements in the field. In this review, we discuss how AI and WGM are being combined to identify mosquito species, offering benefits in monitoring and controlling mosquito populations.eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior-CAPES [2020/12017-9, 88887.626329/2021-00, 309396/2021-2]
dc.description.sponsorshipFAPESP PosDoctoral scholarship [2020/12017-9]
dc.description.sponsorshipCNPq research fellow [309396/2021-2]
dc.identifier.citationACTA TROPICA, v.249, article ID 107089, 7p, 2024
dc.identifier.doi10.1016/j.actatropica.2023.107089
dc.identifier.eissn1873-6254
dc.identifier.issn0001-706X
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/58108
dc.language.isoeng
dc.publisherELSEVIEReng
dc.relation.ispartofActa Tropica
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright ELSEVIEReng
dc.subjectMosquito-borne diseaseseng
dc.subjectSpecies identificationeng
dc.subjectIntegrative approacheng
dc.subject.otherfluctuating asymmetryeng
dc.subject.otherlife-historyeng
dc.subject.othertemperatureeng
dc.subject.otherdipteraeng
dc.subject.othershapeeng
dc.subject.otherdnaeng
dc.subject.wosParasitologyeng
dc.subject.wosTropical Medicineeng
dc.titleIntegrating artificial intelligence and wing geometric morphometry to automate mosquito classificationeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalMORAIS, Mauro Cesar Cafundo de:Inst Israelita Ensino & Pesquisa Albert Einstein I, Soc Beneficente Israelita Brasileira Albert Einste, Sao Paulo, SP, Brazil; Inst Pasteur Sao Paulo, Computat Syst Biol Lab CSBL, BR-05508020 Sao Paulo, SP, Brazil
hcfmusp.citation.scopus1
hcfmusp.contributor.author-fmusphcVINICIO RODRIGUES DE LIMA
hcfmusp.contributor.author-fmusphcKARIN KIRCHGATTER
hcfmusp.description.articlenumber107089
hcfmusp.description.volume249
hcfmusp.origemWOS
hcfmusp.origem.pubmed38043672
hcfmusp.origem.scopus2-s2.0-85178614945
hcfmusp.origem.wosWOS:001135057500001
hcfmusp.publisher.cityAMSTERDAMeng
hcfmusp.publisher.countryNETHERLANDSeng
hcfmusp.relation.referenceAdams DC, 2013, METHODS ECOL EVOL, V4, P393, DOI 10.1111/2041-210X.12035eng
hcfmusp.relation.referenceAgnew P, 1997, P ROY SOC B-BIOL SCI, V264, P9, DOI 10.1098/rspb.1997.0002eng
hcfmusp.relation.referenceArista-Jalife A, 2020, KNOWL-BASED SYST, V189, DOI 10.1016/j.knosys.2019.07.012eng
hcfmusp.relation.referenceAsmai S., 2019, Int. J. Innov. Technol. Explor. Eng., V8, P804, DOI [10.35940/ijitee.L3213.1081219, DOI 10.35940/IJITEE.L3213.1081219]eng
hcfmusp.relation.referenceBonnan MF, 2007, ANAT REC, V290, P1089, DOI 10.1002/ar.20578eng
hcfmusp.relation.referenceWilke ABB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161643eng
hcfmusp.relation.referenceCalle DA, 2002, MEM I OSWALDO CRUZ, V97, P1191, DOI 10.1590/S0074-02762002000800021eng
hcfmusp.relation.referenceCamargo-Neves V.L.F., 2021, Stricto Sensu, P197eng
hcfmusp.relation.referenceCardillo M., 2010, Morphometrics for Nonmorphometricians, P325, DOI [DOI 10.1007/978-3-540-95853-6_15, 10.1007/978-3-540-95853-6_15]eng
hcfmusp.relation.referenceChollet F., 2021, Deep Learning with Python, V2nd, P814eng
hcfmusp.relation.referenceChriste RD, 2016, INFECT GENET EVOL, V45, P434, DOI 10.1016/j.meegid.2016.10.007eng
hcfmusp.relation.referenceConsoli R.A.G.B., 1994, Fiocruz Datamarkineng
hcfmusp.relation.referenceDujardin JP, 2011, GENETICS AND EVOLUTION OF INFECTIOUS DISEASES, P473, DOI 10.1016/B978-0-12-384890-1.00016-9eng
hcfmusp.relation.referenceDujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011eng
hcfmusp.relation.referenceFanioudakis E, 2018, EUR SIGNAL PR CONF, P2410, DOI 10.23919/EUSIPCO.2018.8553542eng
hcfmusp.relation.referenceFolmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294eng
hcfmusp.relation.referenceGoodfellow I, 2016, ADAPT COMPUT MACH LE, P1eng
hcfmusp.relation.referenceHajibabaei M, 2006, MOL ECOL NOTES, V6, P959, DOI 10.1111/j.1471-8286.2006.01470.xeng
hcfmusp.relation.referenceHarbach R.E., 2023, Mosquito Taxonomic Inventoryeng
hcfmusp.relation.referenceHarbach RE, 2007, ZOOTAXA, P591eng
hcfmusp.relation.referenceHebert PDN, 2003, P ROY SOC B-BIOL SCI, V270, P313, DOI 10.1098/rspb.2002.2218eng
hcfmusp.relation.referenceHoule D, 2003, BMC EVOL BIOL, V3, DOI 10.1186/1471-2148-3-25eng
hcfmusp.relation.referenceHuang LP, 2018, CONF TECHNOL APPL, P24, DOI 10.1109/TAAI.2018.00015eng
hcfmusp.relation.referenceKittichai V, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-84219-4eng
hcfmusp.relation.referenceKlingenberg CP, 2013, SYST BIOL, V62, P591, DOI 10.1093/sysbio/syt025eng
hcfmusp.relation.referenceKlingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.xeng
hcfmusp.relation.referenceKrieger H., 2002, Area de Ciencias Biologicas. Parcerias Estrategicas. Ministerio da Ciencia e Tecnologia, V4eng
hcfmusp.relation.referenceKrizhevsky Alex, 2017, Communications of the ACM, V60, P84, DOI 10.1145/3065386eng
hcfmusp.relation.referenceLeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539eng
hcfmusp.relation.referenceLi K, 2017, INT CONF ACOUST SPEE, P2726, DOI 10.1109/ICASSP.2017.7952652eng
hcfmusp.relation.referenceLorenz C, 2020, INFECT GENET EVOL, V77, DOI 10.1016/j.meegid.2019.104052eng
hcfmusp.relation.referenceLorenz C, 2017, INFECT GENET EVOL, V54, P205, DOI 10.1016/j.meegid.2017.06.029eng
hcfmusp.relation.referenceLorenz C, 2015, ACTA TROP, V152, P165, DOI 10.1016/j.actatropica.2015.09.011eng
hcfmusp.relation.referenceLorenz C, 2013, AM J TROP MED HYG, V89, P928, DOI 10.4269/ajtmh.13-0359eng
hcfmusp.relation.referenceLorenz C, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-257eng
hcfmusp.relation.referenceMitteroecker P, 2009, EVOL BIOL, V36, P235, DOI 10.1007/s11692-009-9055-xeng
hcfmusp.relation.referenceMoraes D.A., 2003, Bioletim, V3, P1eng
hcfmusp.relation.referenceMpho M, 2002, HEREDITY, V88, P307, DOI 10.1038/sj.hdy.6800045eng
hcfmusp.relation.referenceMpho M, 2001, CHEMOSPHERE, V45, P713, DOI 10.1016/S0045-6535(01)00140-0eng
hcfmusp.relation.referenceMultini LC, 2019, ACTA TROP, V190, P30, DOI 10.1016/j.actatropica.2018.10.009eng
hcfmusp.relation.referenceOkayasu K, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9183935eng
hcfmusp.relation.referenceOrlandin E, 2017, BRAZ J BIOL, V77, P60, DOI 10.1590/1519-6984.09815eng
hcfmusp.relation.referencePark J, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-57875-1eng
hcfmusp.relation.referencePataki BA, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-83657-4eng
hcfmusp.relation.referenceRaia-Barjat T, 2011, GYNECOL OBSTET FERTI, V39, P614, DOI 10.1016/j.gyobfe.2011.07.028eng
hcfmusp.relation.referenceRenaud AK, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-24eng
hcfmusp.relation.referenceRohlf F.J., 2006, tpsDig, Digitize Landmarks and Outlines, Version 2.05eng
hcfmusp.relation.referenceSchneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089eng
hcfmusp.relation.referenceSiddiqua R., 2021, AETiC, V5, P11, DOI [10.33166/AETiC.2021.03.002, DOI 10.33166/AETIC.2021.03.002, 10.33166/AETIC.2021.03.002]eng
hcfmusp.relation.referenceSimoes RF, 2020, INSECTS, V11, DOI 10.3390/insects11090567eng
hcfmusp.relation.referenceTahir HM, 2016, MITOCHONDRIAL DNA A, V27, P4463, DOI 10.3109/194017362015.1089572eng
hcfmusp.relation.referenceTuring AM. I., 1950, MIND, VLIX, P433, DOI [DOI 10.1007/978-1-4020-6710-5_3, 10.1093/mind/LIX.236.433]eng
hcfmusp.relation.referenceVidal PO, 2012, INFECT GENET EVOL, V12, P591, DOI 10.1016/j.meegid.2011.11.013eng
hcfmusp.relation.referenceVirginio F, 2021, FRONT ECOL EVOL, V9, DOI 10.3389/fevo.2021.660941eng
hcfmusp.relation.referenceVirginio F, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0769-6eng
hcfmusp.relation.referenceYang Y, 2023, BIOLOGY-BASEL, V12, DOI 10.3390/biology12071006eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication74c1a6b1-cfb1-4f96-99a2-c541abad0274
relation.isAuthorOfPublicationa757f954-8b8f-4c74-97a4-31c951cc7bb4
relation.isAuthorOfPublication.latestForDiscovery74c1a6b1-cfb1-4f96-99a2-c541abad0274
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_LIMA_Integrating_artificial_intelligence_and_wing_geometric_morphometry_to_2024.PDF
Tamanho:
5.05 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)