Potential Beneficial Effect of Rifaximin in the Prevention of Hepatocellular Carcinoma through the Modulation of the Microbiota in an Experimental Model of Non-alcoholic Fatty Liver Disease

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SOCIEDAD ARGENTINA DE GASTROENTEROLOGIA
Autores
FERRARI, J. Tonin
GUERREIRO, G. Tayguara Silveira
LONGO, L.
SILVEIRA, T. R. D.
CERSKI, C. T. Schmidt
TOZAWA, E.
ÁLVARES-DA-SILVA, M. R.
URIBE-CRUZ, C.
Citação
ACTA GASTROENTEROLOGICA LATINOAMERICANA, v.53, n.3, p.265-282, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Summary Aim. To evaluate the effects of rifaximin through microbiota modulation in a model of hepatocellular carcinoma secondary to non-alcoholic fatty liver disease. Methods. Three groups of 8 adult male Sprague-Dawley rats each were divided as follows: the HCC group: rats fed a high-fat and choline-deficient diet plus diethylnitrosamine as a carcinogen, the hepatocellular carcinoma treated group: rats fed a high-fat and choline-deficient diet plus diethylnitrosamine and treated with rifaximin and the control group: animals fed standard diet and water. The rats were euthanized after 16 weeks. We performed analyses of liver pathology for non-alcoholic fatty liver disease severity and cancer grading, gene expression in intestinal and hepatic tissues and fecal microbiota. Results. All animals in the hepatocellular carcinoma group had non-alcoholic fatty liver disease and developed hepatocellular carcinoma lesions. Rifaximin animals showed less intense non-alcoholic fatty liver disease (assessed by non-alcoholic fatty liver disease activity score [NAS]) compared to the hepatocellular carcinoma group. Both the hepatocellular carcinoma and hepatocellular carcinoma + rifaximin groups showed areas of fibrosis as assessed by picrosirius red. Three animals in the rifaximin group did not develop cancerous lesions. Gut microbiota analyses revealed differences in diversity and composition in the control group vs hepatocellular carcinoma and rifaximin groups. Twelve differentially abundant genera were identified between the hepatocellular carcinoma and rifaximin groups. In the rifaximin group, gene expression of intestinal tight junctions decreased. Conclusions. In a rodent model of non-alcoholic fatty liver disease-related hepatocellular carcinoma, rifaximin reduces the histological severity of non-alcoholic fatty liver disease and the occurrence of hepatocellular carcinoma, probably by modulating the gut microbiota independently of markers of intestinal permeability.
Palavras-chave
Gut microbiota, hepatocellular carcinoma, non-alcoholic fatty liver disease, rifaximin
Referências
  1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, Et al., Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention, Nat Rev Gastroenterol Hepatol [Internet], 15, 1, pp. 11-20, (2018)
  2. Than NN, Newsome PN., A concise review of non-alcoholic fatty liver disease, Atherosclerosis, 239, 1, (2015)
  3. Lewis JR, Mohanty SR., Nonalcoholic fatty liver disease: A review and update, Dig Dis Sci, 55, 3, pp. 560-578, (2010)
  4. Gomes MA, Priolli DG, Tralhao JG, Botelho MF., Hepatocellular carcinoma: Epidemiology, biology, diagnosis, and therapies, Rev Assoc Med Bras, 59, 5, pp. 514-524, (2013)
  5. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A., Global cancer statistics, 2012, CA Cancer J Clin, 65, 2, pp. 87-108, (2015)
  6. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, Et al., Intestinal microbiota in patients with nonalcoholic fatty liver disease, Hepatology, 58, 1, pp. 120-127, (2013)
  7. Jiang J-W, Chen X-H, Ren Z-G, Zheng S-S., Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis, Hepatobiliary Pancreat Dis Int, (2018)
  8. Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG., Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease, Hepatobiliary Pancreat Dis Int, 16, 4, (2017)
  9. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology, 63, 3, pp. 764-775, (2016)
  10. Schwabe RF, Greten TF., Gut microbiome in HCC – Mechanisms, diagnosis and therapy, J Hepatol, 72, 2, (2020)
  11. Zhou R, Fan X, Schnabl B., Role of the intestinal microbiome in liver fibrosis development and new treatment strategies, Transl Res, 209, pp. 22-38, (2019)
  12. Roderburg C, Luedde T., The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular carcinoma, Gut Microbes, (2014)
  13. Tao X, Wang N, Qin W., Gut Microbiota and Hepatocellular Carcinoma, Gastrointest Tumors, (2015)
  14. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Et al., Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4, Cancer Cell, 21, 4, pp. 504-516, (2012)
  15. Pimentel M., Review of rifaximin as treatment for SIBO and IBS, Expert Opin Investig Drugs [Internet], 18, 3, pp. 349-358, (2009)
  16. Shayto RH, Abou Mrad R, Sharara AI., Use of rifaximin in gastrointestinal and liver diseases, World J Gastroenterol [Internet], 22, 29, pp. 6638-6651, (2016)
  17. Abdel-Razik A, Mousa N, Shabana W, Refaey M, Elzehery R, Elhelaly R, Et al., Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot, Eur J Gastroenterol Hepatol, 30, 10, pp. 1237-1246, (2018)
  18. Cobbold JFL, Atkinson S, Marchesi JR, Smith A, Wai SN, Stove J, Et al., Rifaximin in non-alcoholic steatohepatitis: An open-label pilot study, Hepatol Res, 48, 1, pp. 69-77, (2018)
  19. Gangarapu V, Ince AT, Baysal B, Kayar Y, Kilic U, Gok O, Et al., Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease, Eur J Gastroenterol Hepatol [Internet], 27, 7, pp. 840-845, (2015)
  20. de Lima VMR, Oliveira CPMS, Alves VAF, Chammas MC, Oliveira EP, Stefano JT, Et al., A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma, J Hepatol [Internet], 49, 6, pp. 1055-1061, (2008)
  21. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease, Hepatology, 41, 6, pp. 1313-1321, (2005)
  22. Edmondson HA, Steiner PE., Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies, Cancer, 7, 3, pp. 462-503, (1954)
  23. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Et al., Metagenomic biomarker discovery and explanation, Genome Biol [Internet], 12, 6, (2011)
  24. Carvalho CF, Chammas MC, Souza de Oliveira CPM, Cogliati B, Carrilho FJ, Cerri GG., Elastography and Contrast-enhanced Ultrasonography in the Early Detection of Hepatocellular Carcinoma in an Experimental Model of Nonalcoholic Steatohepatitis, J Clin Exp Hepatol, (2013)
  25. Ezzaidi N, Zhang X, Coker OO, Yu J., New insights and therapeutic implication of gut microbiota in non-alcoholic fatty liver disease and its associated liver cancer, Cancer Lett, 459, pp. 186-191, (2019)
  26. Temraz S, Nassar F, Kreidieh F, Mukherji D, Shamseddine A, Nasr R., Hepatocellular Carcinoma Immunotherapy and the Potential Influence of Gut Microbiome, Int J Mol Sci, 22, 15, (2021)
  27. Chu H, Williams B, Schnabl B., Gut microbiota, fatty liver disease, and hepatocellular carcinoma, Liver Res, 2, 1, pp. 43-51, (2018)
  28. Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G., Microbial Translocation in Chronic Liver Diseases, Int J Microbiol, 2012, pp. 1-12, (2012)
  29. Gines P., Simvastatin Plus Rifaximin in Decompensated Cirrhosis (LIVERHOPE) [Internet], (2018)
  30. Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, Et al., Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease, J Pediatr Gastroenterol Nutr [Internet], 52, 6, pp. 740-743, (2011)
  31. Holmes E, Li J V., Marchesi JR, Nicholson JK., Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk, Cell Metab, 16, 5, (2012)
  32. Wu L, Feng J, Li J, Yu Q, Ji J, Wu J, Et al., The gut microbiome-bile acid axis in hepatocarcinogenesis, Biomed Pharmacother, 133, (2021)
  33. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Et al., Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome, Nature, 499, 7456, pp. 97-101, (2013)
  34. Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, Et al., Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease, Hepatology, 69, 1, pp. 107-120, (2019)
  35. Ferreira DMS, Afonso MB, Rodrigues PM, Simao AL, Pereira DM, Borralho PM, Et al., c-Jun N-Terminal Kinase 1/c-Jun Activation of the p53/MicroRNA 34a/Sirtuin 1 Pathway Contributes to Apoptosis Induced by Deoxycholic Acid in Rat Liver, Mol Cell Biol, 34, 6, (2014)
  36. Zhao Y, Wu J, Li J V., Zhou NY, Tang H, Wang Y., Gut microbiota composition modifies fecal metabolic profiles in mice, J Proteome Res [Internet], 12, 6, pp. 2987-2999, (2013)
  37. Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Et al., Characterization of fecal microbial communities in patients with liver cirrhosis, Hepatology, 54, 2, pp. 562-572, (2011)
  38. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, Et al., Altered profile of human gut microbiome is associated with cirrhosis and its complications, J Hepatol, 60, 5, pp. 940-947, (2014)
  39. Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Et al., Protective Effect of Akkermansia muciniphila against Immune-Mediated Liver Injury in a Mouse Model, Front Microbiol, 8, (2017)
  40. Kim S, Lee Y, Kim Y, Seo Y, Lee H, Ha J, Et al., Akkermansia muciniphila Prevents Fatty Liver Disease, Decreases Serum Triglycerides, and Maintains Gut Homeostasis, Appl Environ Microbiol, 86, 7, (2020)
  41. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Et al., Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease, J Clin Invest, 125, 1, (2015)
  42. Bergheim I, Weber S, Vos M, Kramer S, Volynets V, Kaserouni S, Et al., Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin, J Hepatol, 48, 6, pp. 983-992, (2008)
  43. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Et al., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature, 482, 7384, pp. 179-185, (2012)
  44. Yamada S, Kamada N, Amiya T, Nakamoto N, Nakaoka T, Kimura M, Et al., Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis, BMC Gastroenterol, 17, 1, (2017)
  45. Lv XY, Ding HG, Zheng JF, Fan CL, Li L., Rifaximin improves survival in cirrhotic patients with refractory ascites: A real-world study, World J Gastroenterol, 26, 8, pp. 199-218, (2020)
  46. Fodor AA, Pimentel M, Chey WD, Lembo A, Golden PL, Israel RJ, Et al., Rifaximin is associated with modest, transient decreases in multiple taxa in the gut microbiota of patients with diarrhoea-predominant irritable bowel syndrome, Gut Microbes, 10, 1, pp. 22-33, (2019)
  47. Ponziani FR, Zocco MA, D'Aversa F, Pompili M, Gasbarrini A., Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation, World J Gastroenterol, 23, 25, (2017)
  48. Bajaj JS, Sikaroodi M, Shamsaddini A, Henseler Z, Santiago-Rodriguez T, Acharya C, Et al., Interaction of bacterial metagenome and virome in patients with cirrhosis and hepatic encephalopathy, Gut, 70, 6, pp. 1162-1173, (2021)
  49. Jiang L, Chu H, Gao B, Lang S, Wang Y, Duan Y, Et al., Transcriptomic Profiling Identifies Novel Hepatic and Intestinal Genes Following Chronic Plus Binge Ethanol Feeding in Mice, Dig Dis Sci [Internet], 65, 12, pp. 3592-3604, (2020)
  50. Li F, Ye J, Shao C, Zhong B., Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis, Lipids Health Dis, 20, 1, (2021)
  51. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Et al., Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl Environ Microbiol [Internet], 75, 23, pp. 7537-7541, (2009)
  52. Rognes T, Flouri T, Nichols B, Quince C, Mahe F., VSEARCH: A versatile open source tool for metagenomics, PeerJ, 2016, 10, (2016)
  53. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Et al., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucleic Acids Res, 41, D1, pp. D590-D596, (2013)