Differential microRNA Profile in Operational Tolerance: A Potential Role in Favoring Cell Survival

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN IMMUNOLOGY, v.10, article ID 740, 13p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Operational tolerance (OT) is a state of graft functional stability that occurs after at least 1 year of immunosuppressant withdrawal. MicroRNAs (microRNA) are small non-coding RNAs that downregulate messenger RNA/protein expression of innumerous molecules and are critical for homeostasis. We investigated whether OT in kidney transplantation displays a differential microRNA profile, which would suggest that microRNAs participate in Operational Tolerance mechanisms, and may reveal potential molecular pathways. Methods: We first compared serum microRNA in OT (n = 8) with chronic rejection (CR) (n = 5) and healthy individuals (HI) (n = 5), using a 768-microRNA qPCR-panel. We used the Thermo Fisher Cloud computing platform to compare the levels of microRNAs in the OT group in relation to the other study groups. We performed validation experiments for miR-885-5p, by q-PCR, in a larger number of study subjects (OT = 8, CR = 12, HI = 12), as individual samples. Results: We detected a differential microRNA profile in OT vs. its opposing clinical outcome-CR-suggesting that microRNAs may integrate transplantation tolerance mechanisms. Some miRNAs were detected at higher levels in OT: miR-885-5p, miR-331-3p, miR-27a-5p vs. CR; others, we found at lower levels: miR-1233-3p, miR-572, miR-638, miR-1260a. Considering highly predicted/experimentally demonstrated targets of these miRNAs, bioinformatics analysis revealed that the granzyme B, and death receptor pathways are dominant, suggesting that cell death regulation integrates transplantation tolerance mechanisms. We confirmed higher miR-885-5p levels in OT vs. CR, and vs. HI, in a larger number of subjects. Conclusions: We propose that epigenetics mechanisms involving microRNAs may integrate human transplantation tolerance mechanisms, and regulate key members of the cell death/survival signaling. miR-885-5p could favor cell survival in OT by diminishing the levels of CRADD/RAIDD and CASP3. Nonetheless, given the nature of any complex phenomenon in humans, only cumulative data will help to determine whether this microRNA differential profile may be related to the cause or consequence of operational tolerance.
Palavras-chave
kidney transplantation, operational tolerance, immunoregulation, chronic rejection, microRNAs, cell death, epigenetics
Referências
  1. Arroyo JD, 2011, P NATL ACAD SCI USA, V108, P5003, DOI 10.1073/pnas.1019055108
  2. Bartel DP, 2004, CELL, V116, P281, DOI 10.1016/S0092-8674(04)00045-5
  3. Braudeau C, 2007, TRANSPL INT, V20, P845, DOI 10.1111/j.1432-2277.2007.00537.x
  4. Chen X, 2008, CELL RES, V18, P997, DOI 10.1038/cr.2008.282
  5. Chesneau M, 2014, AM J TRANSPLANT, V14, P144, DOI 10.1111/ajt.12508
  6. Danger R, 2012, J AM SOC NEPHROL, V23, P597, DOI 10.1681/ASN.2011060543
  7. Duan H, 1997, NATURE, V385, P86, DOI 10.1038/385086a0
  8. Farid WRR, 2012, LIVER TRANSPLANT, V18, P290, DOI 10.1002/lt.22438
  9. Festjens N, 2007, CELL DEATH DIFFER, V14, P400, DOI 10.1038/sj.cdd.4402085
  10. Gao W, 2007, AM J TRANSPLANT, V7, P1722, DOI 10.1111/j.1600-6143.2007.01842.x
  11. Garofalo M, 2010, CELL DEATH DIFFER, V17, P200, DOI 10.1038/cdd.2009.105
  12. Guan XX, 2013, FASEB J, V27, P1404, DOI 10.1096/fj.12-223420
  13. Guay C, 2013, NAT REV ENDOCRINOL, V9, P513, DOI 10.1038/nrendo.2013.86
  14. Hattori K, 2009, CELL COMMUN SIGNAL, V7, DOI 10.1186/1478-811X-7-9
  15. Kim VN, 2005, NAT REV MOL CELL BIO, V6, P376, DOI 10.1038/nrm1644
  16. Kroesen BJ, 2015, IMMUNOLOGY, V144, P1, DOI 10.1111/imm.12367
  17. LEE RC, 1993, CELL, V75, P843, DOI 10.1016/0092-8674(93)90529-Y
  18. Lindsay MA, 2008, TRENDS IMMUNOL, V29, P343, DOI 10.1016/j.it.2008.04.004
  19. Liu G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075251
  20. Liu XS, 1997, CELL, V89, P175, DOI 10.1016/S0092-8674(00)80197-X
  21. Lozano JJ, 2011, AM J TRANSPLANT, V11, P1916, DOI 10.1111/j.1600-6143.2011.03638.x
  22. Mittelbrunn M, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1285
  23. Montecalvo A, 2012, BLOOD, V119, P756, DOI 10.1182/blood-2011-02-338004
  24. Moraes-Vieira PMM, 2010, HUM IMMUNOL, V71, P442, DOI 10.1016/j.humimm.2010.01.022
  25. Morita M, 2014, SCI REP-UK, V4, DOI 10.1038/srep06649
  26. Newell KA, 2010, J CLIN INVEST, V120, P1836, DOI 10.1172/JCI39933
  27. Pomerantz JL, 1999, EMBO J, V18, P6694, DOI 10.1093/emboj/18.23.6694
  28. Porter AG, 1999, CELL DEATH DIFFER, V6, P99, DOI 10.1038/sj.cdd.4400476
  29. Revilla-Nuin B, 2017, LIVER TRANSPLANT, V23, P933, DOI 10.1002/lt.24691
  30. Sagoo P, 2010, J CLIN INVEST, V120, P1848, DOI 10.1172/JCI39922
  31. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  32. Silva HM, 2012, MOL MED, V18, P733, DOI 10.2119/molmed.2011.00281
  33. Solez K, 2008, AM J TRANSPLANT, V8, P753, DOI 10.1111/j.1600-6143.2008.02159.x
  34. VAUX DL, 1988, NATURE, V335, P440, DOI 10.1038/335440a0
  35. Wherry EJ, 2015, NAT REV IMMUNOL, V15, P486, DOI 10.1038/nri3862
  36. Wong CH, 2006, PLAST RECONSTR SURG, V117, P1206, DOI 10.1097/01.prs.0000200070.66604.1e
  37. Yang XL, 1997, CELL, V89, P1067, DOI 10.1016/S0092-8674(00)80294-9
  38. Zong WX, 1999, GENE DEV, V13, P382, DOI 10.1101/gad.13.4.382
  39. 1997, CELL, V91, P479, DOI 10.1016/S0092-8674(00)80434-1