Pro-Inflammatory Diet Is Correlated with High Veillonella rogosae, Gut Inflammation and Clinical Relapse of Inflammatory Bowel Disease

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
NUTRIENTS, v.15, n.19, article ID 4148, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Inflammatory bowel diseases (IBD) are chronic conditions arising from an intricate interplay of genetics and environmental factors, and are associated with gut dysbiosis, inflammation, and gut permeability. In this study, we investigated whether the inflammatory potential of the diet is associated with the gut microbiota profile, inflammation, and permeability in forty patients with IBD in clinical remission. The dietary inflammatory index (DII) score was used to assess the inflammatory potential of the diet. The fecal microbiota profile was analyzed using 16SrRNA (V3-V4) gene sequencing, while fecal zonulin and calprotectin levels were measured with enzyme-linked immunosorbent assays. We found a positive correlation between the DII score and elevated calprotectin levels (Rho = 0.498; p = 0.001), but not with zonulin levels. Although alpha- and beta-diversity did not significantly differ across DII quartiles, the most pro-inflammatory diet group exhibited a higher fecal abundance of Veillonella rogosae (p = 0.026). In addition, the abundance of some specific bacteria sequences showed an exponential behavior across DII quartiles and a correlation with calprotectin or zonulin levels (p <= 0.050). This included a positive correlation between sq702. Veillonella rogosae and fecal calprotectin levels (Rho = 0.419, p = 0.007). DII, calprotectin, and zonulin levels were identified as significant predictors of 6-month disease relapse (p <= 0.050). Our findings suggest a potential relationship of a pro-inflammatory diet intake with Veillonella rogosae and calprotectin levels in IBD patients in clinical remission, which may contribute to disease relapse.
Palavras-chave
dietary inflammatory index, ulcerative colitis, Crohn's disease, gut microbiota, inflammation, calprotectin, zonulin
Referências
  1. Ananthakrishnan AN, 2018, NAT REV GASTRO HEPAT, V15, P39, DOI 10.1038/nrgastro.2017.136
  2. [Anonymous], 1995, Physical Status: the use and interpretation of anthropometry: report of a world health organization (WHO) expert committee, V854, P1, DOI 10.1002/(sici)1520-6300(1996)8:63.0.co;2-i
  3. Bertani L, 2021, NUTRIENTS, V13, DOI 10.3390/nu13041387
  4. Bian DS, 2022, NUTRIENTS, V14, DOI 10.3390/nu14040901
  5. Bolte LA, 2021, GUT, V70, P1287, DOI 10.1136/gutjnl-2020-322670
  6. Bourgonje AR, 2022, NUTRIENTS, V14, DOI 10.3390/nu14122522
  7. Brazilian Institute of Geography and Statistics (IBGE), 2011, Table of Measures Referred to the Foods Consumed in Brazil
  8. Butera A, 2020, J CROHNS COLITIS, V14, P369, DOI 10.1093/ecco-jcc/jjz154
  9. Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
  10. Caviglia GP, 2019, MINERVA MED, V110, P95, DOI 10.23736/S0026-4806.18.05787-7
  11. Cronin P, 2021, NUTRIENTS, V13, DOI 10.3390/nu13051655
  12. Cui YL, 2022, FEMS MICROBIOL LETT, V369, DOI 10.1093/femsle/fnac072
  13. Das P, 2019, BMC GENOMICS, V20, DOI 10.1186/s12864-019-5899-3
  14. de Graaf MCG, 2022, NUTRIENTS, V14, DOI 10.3390/nu14091945
  15. de Vries JHM, 2019, DIGEST DIS, V37, P131, DOI 10.1159/000494022
  16. Dione N., 2017, New Microbes and New Infections, V18, P38, DOI 10.1016/j.nmni.2017.05.003
  17. Fasano Alessio, 2020, F1000Res, V9, DOI 10.12688/f1000research.20510.1
  18. Fiocchi C, 2018, FRONT MED-LAUSANNE, V5, DOI 10.3389/fmed.2018.00075
  19. Freeman K, 2019, BMJ OPEN, V9, DOI 10.1136/bmjopen-2018-027428
  20. Fuke N, 2019, NUTRIENTS, V11, DOI 10.3390/nu11102277
  21. Gevers D, 2014, CELL HOST MICROBE, V15, P382, DOI 10.1016/j.chom.2014.02.005
  22. Gomollon F, 2017, J CROHNS COLITIS, V11, P3, DOI 10.1093/ecco-jcc/jjw168
  23. Guardiola J, 2014, CLIN GASTROENTEROL H, V12, P1865, DOI 10.1016/j.cgh.2014.06.020
  24. Guo X, 2022, FRONT NUTR, V8, DOI 10.3389/fnut.2021.818902
  25. HARVEY RF, 1980, LANCET, V1, P1134
  26. Haubrock J., 2010, Arch. Public Health, V68, P14
  27. Jukic A, 2021, GUT, V70, P1978, DOI 10.1136/gutjnl-2021-324855
  28. Kaakoush NO, 2020, TRENDS MICROBIOL, V28, P519, DOI 10.1016/j.tim.2020.02.018
  29. Khalil H, 2018, GUT, V67, pA29, DOI 10.1136/gutjnl-2018-BSGAbstracts.55
  30. Khalili H, 2018, NAT REV GASTRO HEPAT, V15, P525, DOI 10.1038/s41575-018-0022-9
  31. Kordjazy N, 2018, PHARMACOL RES, V129, P204, DOI 10.1016/j.phrs.2017.11.017
  32. Lamers CR, 2020, BMC GASTROENTEROL, V20, DOI 10.1186/s12876-020-01435-4
  33. Larussa T, 2017, WORLD J GASTROENTERO, V23, P2483, DOI 10.3748/wjg.v23.i14.2483
  34. Levine A, 2019, GASTROENTEROLOGY, V157, P440, DOI 10.1053/j.gastro.2019.04.021
  35. Lewis JD, 2017, GASTROENTEROLOGY, V152, P398, DOI 10.1053/j.gastro.2016.10.019
  36. Li JL, 2022, ANAEROBE, V78, DOI 10.1016/j.anaerobe.2022.102667
  37. Liu F, 2020, FRONT MED-LAUSANNE, V7, DOI 10.3389/fmed.2020.580803
  38. Ma YS, 2009, ANN EPIDEMIOL, V19, P553, DOI 10.1016/j.annepidem.2009.04.010
  39. Magro F, 2017, J CROHNS COLITIS, V11, P649, DOI 10.1093/ecco-jcc/jjx008
  40. Malícková K, 2017, PRACT LAB MED, V9, P39, DOI 10.1016/j.plabm.2017.09.001
  41. Mentella MC, 2020, NUTRIENTS, V12, DOI 10.3390/nu12040944
  42. Mirmiran P, 2019, NUTR J, V18, DOI 10.1186/s12937-019-0492-9
  43. Mosli MH, 2015, AM J GASTROENTEROL, V110, P802, DOI 10.1038/ajg.2015.120
  44. Ng SC, 2017, LANCET, V390, P2769, DOI 10.1016/S0140-6736(17)32448-0
  45. Pittayanon R, 2020, GASTROENTEROLOGY, V158, P930, DOI 10.1053/j.gastro.2019.11.294
  46. Poppleton DI, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01215
  47. Quast Christian, 2013, Nucleic Acids Res, V41, pD590, DOI 10.1093/nar/gks1219
  48. Rai AK, 2021, ARCH MICROBIOL, V203, P137, DOI 10.1007/s00203-020-02011-w
  49. Rajilic-Stojanovic M, 2015, AM J GASTROENTEROL, V110, P278, DOI 10.1038/ajg.2014.427
  50. Ramos GP, 2019, MAYO CLIN PROC, V94, P155, DOI 10.1016/j.mayocp.2018.09.013
  51. Ribaldone DG, 2019, CLIN EXP GASTROENTER, V12, P321, DOI 10.2147/CEG.S210844
  52. Rizzello F, 2019, NUTRIENTS, V11, DOI 10.3390/nu11051033
  53. Sandborn WJ, 2012, GASTROENTEROLOGY, V142, P257, DOI 10.1053/j.gastro.2011.10.032
  54. Shivappa N, 2014, PUBLIC HEALTH NUTR, V17, P1689, DOI 10.1017/S1368980013002115
  55. The Multiple Source Method (MSM), 2011, Department of Epidemiology of the German Institute of Human Nutrition Potsdam-Rehbrucke (DiFE)
  56. Tian ZY, 2022, CLIN NUTR, V41, DOI 10.1016/j.clnu.2022.04.014
  57. Tian ZY, 2021, ADV NUTR, V12, P2288, DOI 10.1093/advances/nmab069
  58. US Department of Agriculture, 2015, USDA Database for the Flavonoid Content of Selected Foods: Release 3.2
  59. Vagianos Kathy, 2021, Inflamm Bowel Dis, V27, P190, DOI 10.1093/ibd/izaa052
  60. Witkowski M, 2018, SEMIN IMMUNOPATHOL, V40, P145, DOI 10.1007/s00281-017-0658-5
  61. Yang RX, 2021, FRONT MED-LAUSANNE, V8, DOI 10.3389/fmed.2021.663920
  62. Zheng JL, 2020, BRIT J NUTR, V124, P931, DOI 10.1017/S0007114520001853
  63. Zmora N, 2019, NAT REV GASTRO HEPAT, V16, P35, DOI 10.1038/s41575-018-0061-2