Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorCOSTA, E. L. V.
dc.contributor.authorBORGES, J. B.
dc.contributor.authorMELO, A.
dc.contributor.authorSUAREZ-SIPMANN, F.
dc.contributor.authorTOUFEN, C. Jr.
dc.contributor.authorBOHM, S. H.
dc.contributor.authorAMATO, M. B. P.
dc.date.accessioned2023-02-09T20:02:43Z
dc.date.available2023-02-09T20:02:43Z
dc.date.issued2012
dc.description.abstractObjective: To present a novel algorithm for estimating recruitable alveolar collapse and hyperdistension based on electrical impedance tomography (EIT) during a decremental positive end-expiratory pressure (PEEP) titration. Design: Technical note with illustrative case reports. Setting: Respiratory intensive care unit. Patient: Patients with acute respiratory distress syndrome. Interventions: Lung recruitment and PEEP titration maneuver. Measurements and results: Simultaneous acquisition of EIT and X-ray computerized tomography (CT) data. We found good agreement (in terms of amount and spatial location) between the collapse estimated by EIT and CT for all levels of PEEP. The optimal PEEP values detected by EIT for patients 1 and 2 (keeping lung collapse \10%) were 19 and 17 cmH2O, respectively. Although pointing to the same non1dependent lung regions, EIT estimates of hyperdistension represent the functional deterioration of lung units, instead of their anatomical changes, and could not be compared directly with static CT estimates for hyperinflation. Conclusions: We described an EIT-based method for estimating recruitable alveolar collapse at the bedside, pointing out its regional distribution. Additionally, we proposed a measure of lung hyperdistension based on regional lung mechanics. © Springer-Verlag Berlin Heidelberg 2006, 2009, 2012.
dc.identifier.citationCosta, E. L. V.; Borges, J. B.; Melo, A.; Suarez-Sipmann, F.; Toufen, C. Jr.; Bohm, S. H.; Amato, M. B. P.. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. In: . APPLIED PHYSIOLOGY IN INTENSIVE CARE MEDICINE 1: PHYSIOLOGICAL NOTES - TECHNICAL NOTES - SEMINAL STUDIES IN INTENSIVE CARE, THIRD EDITION: SPRINGER BERLIN HEIDELBERG, 2012. p.165-170.
dc.identifier.doi10.1007/978-3-642-28270-6_34
dc.identifier.isbn9783642282706; 9783642282690
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/51312
dc.language.isoeng
dc.publisherSPRINGER BERLIN HEIDELBERG
dc.relation.ispartofAPPLIED PHYSIOLOGY IN INTENSIVE CARE MEDICINE 1: PHYSIOLOGICAL NOTES - TECHNICAL NOTES - SEMINAL STUDIES IN INTENSIVE CARE, THIRD EDITION
dc.rightsrestrictedAccess
dc.rights.holderCopyright SPRINGER BERLIN HEIDELBERG
dc.subjectAcute lung injury
dc.subjectAcute respiratory distress syndrome
dc.subjectComputed tomography
dc.subjectElectrical impedance tomography
dc.subjectLung recruitment
dc.subjectMechanical ventilation
dc.subjectPositive end-expiratory pressure
dc.titleBedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography
dc.typebookPart
dc.type.categorybook chapter
dc.type.versionpublishedVersion
dspace.entity.typePublication
hcfmusp.affiliation.countrySuíça
hcfmusp.affiliation.countryEspanha
hcfmusp.affiliation.countryisoes
hcfmusp.affiliation.countryisoch
hcfmusp.author.externalMELO, A.:Respiratory Intensive Care Unit, University of São Paulo School of Medicine, São Paulo, Brazil
hcfmusp.author.externalSUAREZ-SIPMANN, F.:Respiratory Intensive Care Unit, University of São Paulo School of Medicine, São Paulo, Brazil, Department of Critical Care Medicine, Fundació n Jiménez Díaz-UTE, Madrid, Spain
hcfmusp.author.externalBOHM, S. H.:Respiratory Intensive Care Unit, University of São Paulo School of Medicine, São Paulo, Brazil, CSEM Centre Suisse d’Electronique et de Microtechnique SA, Research Centre for Nanomedicine, Landquart, Switzerland
hcfmusp.citation.scopus7
hcfmusp.contributor.author-fmusphcEDUARDO LEITE VIEIRA COSTA
hcfmusp.contributor.author-fmusphcJOAO BATISTA BORGES SOBRINHO DORINI
hcfmusp.contributor.author-fmusphcCARLOS TOUFEN JUNIOR
hcfmusp.contributor.author-fmusphcMARCELO BRITTO PASSOS AMATO
hcfmusp.description.beginpage165
hcfmusp.description.endpage170
hcfmusp.origemSCOPUS
hcfmusp.origem.scopus2-s2.0-84956801924
hcfmusp.relation.referenceTremblay, L.N., Slutsky, A.S., Ventilator-induced injury: From barotrauma to biotrauma (1998) Proc Assoc am Physicians, 110, pp. 482-488
hcfmusp.relation.referencePlotz, F.B., Slutsky, A.S., Van Vught, A.J., Heijnen, C.J., Ventilator-induced lung injury and multiple system organ failure: A critical review of facts and hypotheses (2004) Intensive Care Med, 30, pp. 1865-1872
hcfmusp.relation.referenceVentilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network (2000) N Engl J Med, 342, pp. 1301-1308
hcfmusp.relation.referenceAmato, M., Barbas, C.S., Medeiros, D.M., Magaldi, R.B., Schettino, G.P., Lorenzi-Filho, G., Kairalla, R.A., Carvalho, C.R., Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome (1998) N Engl J Med, 338, pp. 347-354
hcfmusp.relation.referenceVillar, J., Kacmarek, R.M., Perez-Mendez, L., Aguirre-Jaime, A., A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial (2006) Crit Care Med, 34, pp. 1311-1318
hcfmusp.relation.referenceRanieri, V.M., Suter, P.M., Tortorella, C., De Tullio, R., Dayer, J.M., Brienza, A., Bruno, F., Slutsky, A.S., Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial (1999) JAMA, 282, pp. 54-61
hcfmusp.relation.referenceSuarez-Sipmann, F., Bohm, S.H., Tusman, G., Pesch, T., Thamm, O., Reissmann, H., Reske, A., Hedenstierna, G., Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study (2007) Crit Care Med, 35, pp. 214-221
hcfmusp.relation.referenceBorges, J.B., Carvalho, C., Amato, M., Lung recruitment in patients with ards (2006) N Engl J Med, 355, pp. 319-320. , (author reply 321-322)
hcfmusp.relation.referenceBorges, J.B., Vn, O., Matos, G., Caramez, M., Arantes, P.R., Barros, F., Souza, C.E., Amato, M., Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome (2006) Am J Respir Crit Care Med, 174, pp. 268-278
hcfmusp.relation.referenceTerragni, P.P., Rosboch, G., Tealdi, A., Corno, E., Menaldo, E., Davini, O., Gandini, G., Ranieri, V.M., Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome (2007) Am J Respir Crit Care Med, 175, pp. 160-166
hcfmusp.relation.referenceGrasso, S., Stripoli, T., De Michele, M., Bruno, F., Moschetta, M., Angelelli, G., Munno, I., Fiore, T., Ardsnet ventilatory protocol and alveolar hyperinflation: Role of positive end-expiratory pressure (2007) Am J Respir Crit Care Med, 176, pp. 761-767
hcfmusp.relation.referenceVictorino, J.A., Borges, J.B., Okamoto, V.N., Matos, G., Tucci, M.R., Caramez, M., Tanaka, H., Amato, M., Imbalances in regional lung ventilation: A validation study on electrical impedance tomography (2004) Am J Respir Crit Care Med, 169, pp. 791-800
hcfmusp.relation.referenceFrerichs, I., Hinz, J., Herrmann, P., Weisser, G., Hahn, G., Dudykevych, T., Quintel, M., Hellige, G., Detection of local lung air content by electrical impedance tomography compared with electron beam ct (2002) J Appl Physiol, 93, pp. 660-666
hcfmusp.relation.referenceFrerichs, I., Hahn, G., Schiffmann, H., Berger, C., Hellige, G., Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation (1999) Ann NY Acad Sci, 873, pp. 493-505
hcfmusp.relation.referenceAdler, A., Amyot, R., Guardo, R., Bates, J.H., Berthiaume, Y., Monitoring changes in lung air and liquid volumes with electrical impedance tomography (1997) J Appl Physiol, 83, pp. 1762-1767
hcfmusp.relation.referenceHickling, K.G., Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: A mathematical model of acute respiratory distress syndrome lungs (2001) Am J Respir Crit Care Med, 163, pp. 69-78
hcfmusp.relation.referenceFrazer, D.G., Weber, K.C., Franz, G.N., Evidence of sequential opening and closing of lung units during inflation-deflation of excised rat lungs (1985) Respir Physiol, 61, pp. 277-288
hcfmusp.relation.referenceBersten, A.D., Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury (1998) Eur Respir J, 12, pp. 526-532
hcfmusp.relation.referenceHedenstierna, G., Tokics, L., Strandberg, A., Lundquist, H., Brismar, B., Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis (1986) Acta Anaesthesiol Scand, 30, pp. 183-191
hcfmusp.relation.referenceFrerichs, I., Hahn, G., Hellige, G., Gravity-dependent phenomena in lung ventilation determined by functional eit (1996) Physiol Meas, 17, pp. A149-A157
hcfmusp.relation.referenceSimon, B.A., Christensen, G.E., Low, D.A., Reinhardt, J.M., Computed tomography studies of lung mechanics (2005) Proc am Thorac Soc, 2, pp. 506-507. , (517-521)
hcfmusp.relation.referenceGattinoni, L., Pelosi, P., Vitale, G., Pesenti, A., D’ Andrea, L., Mascheroni, D., Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure (1991) Anesthesiology, 74, pp. 15-23
hcfmusp.relation.referenceFrerichs, I., Dargaville, P.A., Dudykevych, T., Rimensberger, P.C., Electrical impedance tomography: A method for monitoring regional lung aeration and tidal volume distribution? (2003) Intensive Care Med, 29, pp. 2312-2316
hcfmusp.relation.referenceMeier, T., Luepschen, H., Karsten, J., Leibecke, T., Großherr, M., Gehring, H., Leonhardt, S., Assessment of regional lung recruitment and derecruitment during a peep trial based on electrical impedance tomography (2008) Intensive Care Med, 34, pp. 543-550
hcfmusp.relation.referenceLindgren, S., Odenstedt, H., Olegärd, C., Sondergaard, S., Lundin, S., Stenqvist, O., Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: A study using electric impedance tomography (2007) Intensive Care Med, 33, pp. 172-180
hcfmusp.relation.referenceErlandsson, K., Odenstedt, H., Lundin, S., Stenqvist, O., Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery (2006) Acta Anaesthesiol Scand, 50, pp. 833-839
hcfmusp.relation.referenceHinz, J., Gehoff, A., Moerer, O., Frerichs, I., Hahn, G., Hellige, G., Quintel, M., Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury (2007) Eur J Anaesthesiol, 24, pp. 414-424
hcfmusp.scopus.lastupdate2024-06-09
relation.isAuthorOfPublicationc6794eaa-a841-413a-8cf5-efe7cca6882c
relation.isAuthorOfPublication5694c1e5-8ccb-41af-a522-c976d39b23c8
relation.isAuthorOfPublicationf94ce93a-e473-4f8c-b3cc-93bf37a0accc
relation.isAuthorOfPublication73be25b4-f353-4a5e-9f8d-37a04aca9107
relation.isAuthorOfPublication.latestForDiscovery73be25b4-f353-4a5e-9f8d-37a04aca9107
Arquivos