Simultaneous activation of innate and adaptive immunity participates in the development of renal injury in a model of heavy proteinuria

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
PORTLAND PRESS LTD
Citação
BIOSCIENCE REPORTS, v.38, article ID BSR20180762, 18p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Protein overload of proximal tubular cells (PTCs) can promote interstitial injury by unclear mechanisms that may involve activation of innate immunity. We investigated whether prolonged exposure of tubular cells to high protein concentrations stimulates innate immunity, triggering progressive interstitial inflammation and renal injury, and whether specific inhibition of innate or adaptive immunity would provide renoprotection in an established model of massive proteinuria, adriamycin nephropathy (ADR). Adult male Munich-Wistar rats received a single dose of ADR (5 mg/kg, iv), being followed for 2, 4, or 20 weeks. Massive albuminuria was associated with early activation of both the NE-kappa B and NLRP3 innate immunity pathways, whose intensity correlated strongly with the density of lymphocyte infiltration. In addition, ADR rats exhibited clear signs of renal oxidative stress. Twenty weeks after ADR administration, marked interstitial fibrosis, glomerulosclerosis, and renal functional loss were observed. Administration of mycophenolate mofetil (MMF), 10 mg/kg/day, prevented activation of both innate and adaptive immunity, as well as renal oxidative stress and renal fibrosis. Moreover, MMF treatment was associated with shifting of M from the M1 to the M2 phenotype. In cultivated NRK52-E cells, excess albumin increased the protein content of Toll-like receptor (TLR) 4 (TLR4), NLRP3, MCP-1, IL6, IL-1 beta Caspase-1, alpha-actin, and collagen-1. Silencing of TLR4 and/or NLRP3 mRNA abrogated this proinflammatory/profibrotic behavior. Simultaneous activation of innate and adaptive immunity may be key to the development of renal injury in heavy proteinuric disease. Inhibition of specific components of innate and/or adaptive immunity may be the basis for future strategies to prevent chronic kidney disease (CKD) in this setting.
Palavras-chave
Referências
  1. Abbate M, 2006, J AM SOC NEPHROL, V17, P2974, DOI 10.1681/ASN.2006040377
  2. Arias SCA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056215
  3. Anders HJ, 2007, CURR OPIN NEPHROL HY, V16, P177, DOI 10.1097/MNH.0b013e32803fb767
  4. Anders HJ, 2011, J AM SOC NEPHROL, V22, P1007, DOI 10.1681/ASN.2010080798
  5. Anders HJ, 2010, J AM SOC NEPHROL, V21, P1270, DOI 10.1681/ASN.2010030233
  6. Andreucci M, 2010, CHEM-BIOL INTERACT, V185, P253, DOI 10.1016/j.cbi.2010.03.019
  7. Arbore G, 2016, SCIENCE, V352, DOI 10.1126/science.aad1210
  8. Baines RJ, 2011, NAT REV NEPHROL, V7, P177, DOI 10.1038/nrneph.2010.174
  9. Baroja-Mazo A, 2014, NAT IMMUNOL, V15, P738, DOI 10.1038/ni.2919
  10. Braga TT, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00602
  11. Cao W, 2011, J HYPERTENS, V29, P1411, DOI 10.1097/HJH.0b013e32834786f0
  12. Chang A, 2014, CURR OPIN NEPHROL HY, V23, P204, DOI 10.1097/01.mnh.0000444814.49755.90
  13. Correa-Costa M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0029004
  14. Costa JCSR, 2006, AM J NEPHROL, V26, P281, DOI 10.1159/000093960
  15. Donadelli R, 2000, AM J KIDNEY DIS, V36, P1226, DOI 10.1053/ajkd.2000.19838
  16. EDDY AA, 1995, KIDNEY INT, V47, P1546, DOI 10.1038/ki.1995.218
  17. EDDY AA, 1989, AM J PATHOL, V135, P719
  18. El-Sayed EM, 2017, J BIOCHEM MOL TOXIC, V31, DOI 10.1002/jbt.21940
  19. Fanelli C, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02915-6
  20. Fang L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072344
  21. Foresto-Neto O, 2018, LAB INVEST, V98, P773, DOI 10.1038/s41374-018-0029-4
  22. FRIDOVICH I, 1989, J BIOL CHEM, V264, P7761
  23. Fujihara CK, 1998, AM J PHYSIOL-RENAL, V274, pF573, DOI 10.1152/ajprenal.1998.274.3.F573
  24. Fujihara CK, 2003, KIDNEY INT, V64, P2172, DOI 10.1046/j.1523-1755.2003.00319.x
  25. Fujihara CK, 1998, KIDNEY INT, V54, P1510, DOI 10.1046/j.1523-1755.1998.00138.x
  26. Fujihara CK, 2001, HYPERTENSION, V37, P170, DOI 10.1161/01.HYP.37.1.170
  27. Fujihara CK, 2007, AM J PHYSIOL-RENAL, V292, pF92, DOI 10.1152/ajprenal.00184.2006
  28. Goncalves GM, 2011, SCAND J IMMUNOL, V73, P428, DOI 10.1111/j.1365-3083.2011.02523.x
  29. Gong W, 2016, AM J PHYSIOL-RENAL, V310, pF1081, DOI 10.1152/ajprenal.00534.2015
  30. Grynberg K, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00829
  31. Guo I H, 2017, MEDIAT INFLAMM, V2017
  32. Hutton HL, 2016, NEPHROLOGY, V21, P736, DOI 10.1111/nep.12785
  33. Jiang YS, 2013, MED HYPOTHESES, V81, P73, DOI 10.1016/j.mehy.2013.03.020
  34. Lee SB, 2010, KIDNEY INT, V78, pS22, DOI 10.1038/ki.2010.418
  35. Li XN, 2010, J AM SOC NEPHROL, V21, P1115, DOI 10.1681/ASN.2009070760
  36. Liu D, 2015, J BIOL CHEM, V290, P18018, DOI 10.1074/jbc.M115.662064
  37. Liu D, 2014, INT J BIOCHEM CELL B, V57, P7, DOI 10.1016/j.biocel.2014.09.018
  38. Liu YH, 2004, J AM SOC NEPHROL, V15, P1, DOI 10.1097/01.ASN.0000106015.29070.E7
  39. Lorenz G, 2014, NEPHROL DIAL TRANSPL, V29, P41, DOI 10.1093/ndt/gft332
  40. Lu JY, 2013, KIDNEY INT, V84, P745, DOI 10.1038/ki.2013.135
  41. Morigi M, 2002, J AM SOC NEPHROL, V13, P1179
  42. Patel ML, 2015, INT J NEPHROL RENOV, V8, P139, DOI 10.2147/IJNRD.S87423
  43. Pelegrin P, 2009, EMBO J, V28, P2114, DOI 10.1038/emboj.2009.163
  44. Pereira WD, 2015, MEDIAT INFLAMM, DOI 10.1155/2015/209764
  45. Romagnani P, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2017.88
  46. SCHRECK R, 1991, EMBO J, V10, P2247, DOI 10.1002/j.1460-2075.1991.tb07761.x
  47. Schroppel B, 2006, KIDNEY INT, V69, P785, DOI 10.1038/sj.ki.5000190
  48. Smith KD, 2009, CURR OPIN NEPHROL HY, V18, P189, DOI 10.1097/MNH.0b013e32832a1d5f
  49. Takahashi Y, 2017, NEPHROLOGY, V22, P49, DOI 10.1111/nep.12737
  50. Takase O, 2008, KIDNEY INT, V73, P567, DOI 10.1038/sj.ki.5002563
  51. Thomas ME, 1999, KIDNEY INT, V55, P890, DOI 10.1046/j.1523-1755.1999.055003890.x
  52. Utimura R, 2003, KIDNEY INT, V63, P209, DOI 10.1046/j.1523-1755.2003.00736.x
  53. Vilaysane A, 2010, J AM SOC NEPHROL, V21, P1732, DOI 10.1681/ASN.2010020143
  54. Vongwiwatana A, 2005, AM J TRANSPLANT, V5, P1367, DOI 10.1111/j.1600-6143.2005.00843.x
  55. Wang Y, 2000, KIDNEY INT, V58, P1797, DOI 10.1046/j.1523-1755.2000.00342.x
  56. Wang Y, 2001, KIDNEY INT, V59, P941, DOI 10.1046/j.1523-1755.2001.00577.x
  57. Wang YP, 1999, J AM SOC NEPHROL, V10, P1204
  58. Wolf G, 2004, KIDNEY INT, V66, P1849, DOI 10.1111/j.1523-1755.2004.00958.x
  59. Zeng F, 2016, MOL MED REP, V13, P560, DOI 10.3892/mmr.2015.4526
  60. Zhang BZ, 2008, J AM SOC NEPHROL, V19, P923, DOI 10.1681/ASN.2007090982
  61. Zhong JY, 2017, AM J PHYSIOL-RENAL, V312, pF375, DOI 10.1152/ajprenal.00266.2016
  62. Zhou RB, 2010, NAT IMMUNOL, V11, P136, DOI 10.1038/ni.1831
  63. Zhuang YB, 2014, J BIOL CHEM, V289, P25101, DOI 10.1074/jbc.M114.578260
  64. Zoja C, 1998, KIDNEY INT, V53, P1608, DOI 10.1046/j.1523-1755.1998.00905.x