Thermography in strokes

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorALFIERI, F. M.
dc.contributor.authorSANTOS, A. C. A. dos
dc.contributor.authorBATTISTELLA, L. R.
dc.date.accessioned2023-12-04T19:37:52Z
dc.date.available2023-12-04T19:37:52Z
dc.date.issued2023
dc.description.abstractAmong the consequences of stroke, sensory disorders can affect more than half of patients. One of the consequences is the change in body temperature between the hemibodies that the patients can perceive or neglect. Although this temperature difference has been reported as unpleasant, little is understood or studied. As autonomic disorders are present in patients with stroke, and as thermography can assess body temperature distribution, using this assessment in these patients is feasible. This chapter will address body temperature distribution in patients with and without stroke and the associations between sensorimotor recovery, sensitivity, perception, and body temperature in individuals with stroke sequelae. © 2023 Nova Science Publishers, Inc. All rights reserved.
dc.identifier.citationAlfieri, F. M.; dos Santos, A. C. A.; Battistella, L. R.. Thermography in strokes. In: . The Fundamentals of Infrared Thermal Imaging: NOVA SCIENCE PUBLISHERS, INC., 2023. p.45-50.
dc.identifier.isbn979-889113163-7
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/57200
dc.language.isoeng
dc.publisherNOVA SCIENCE PUBLISHERS, INC.
dc.relation.ispartofThe Fundamentals of Infrared Thermal Imaging
dc.rightsrestrictedAccess
dc.rights.holderCopyright NOVA SCIENCE PUBLISHERS, INC.
dc.subjectStroke
dc.subjectTemperature sensation
dc.subjectThermography
dc.titleThermography in strokes
dc.typebookPart
dc.type.categorybook chapter
dc.type.versionpublishedVersion
dspace.entity.typePublication
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcFABIO MARCON ALFIERI
hcfmusp.contributor.author-fmusphcARTUR CESAR AQUINO DOS SANTOS
hcfmusp.contributor.author-fmusphcLINAMARA RIZZO BATTISTELLA
hcfmusp.description.beginpage45
hcfmusp.description.endpage50
hcfmusp.origemScopus
hcfmusp.origem.scopus2-s2.0-85174130514
hcfmusp.relation.referenceAlfieri F.M., Battistella L.R., Body temperature of healthy men evaluated by thermography: A study of reproducibility, Technol Health Care, 26, 3, pp. 559-564, (2018)
hcfmusp.relation.referenceAlfieri F.M., Massaro A.R., Filippo T.R., Portes L.A., Battistella L.R., Evaluation of body temperature in individuals with stroke, NeuroRehabilitation, 40, 1, pp. 119-128, (2017)
hcfmusp.relation.referenceBarthels D., Das H., Current advances in ischemic stroke research and therapies, Biochim Biophys Acta Mol Basis Dis, 1866, 1-4, (2020)
hcfmusp.relation.referenceCampbell I., Body temperature and its regulation, Anaesth Intens Care Med, 12, pp. 240-244, (2011)
hcfmusp.relation.referenceda Silva Dias C., Alfieri F.M., dos Santos A.C.A., Battistella L.R., Whole-body thermographic assessment of patients with stroke sequelae who report temperature differences between the sides, Thermology International, 32, 1, pp. 14-19, (2022)
hcfmusp.relation.referenceda Silva Dias C., Alfieri F.M., Dos Santos A.C.A., Battistella L.R., Body temperature and esthesia in individuals with stroke, Sci. Rep, 11-12, 1, (2021)
hcfmusp.relation.referenceFeldman F., Nickoloff E.L., Normal thermographic standards for the cervical spine and upper extremities, Skeletal Radiol, 12, 4, pp. 235-249, (1984)
hcfmusp.relation.referenceFujita K., Yamamoto T., Kamezaki T., Matsumara A., Efficacy of Keishibukuryogan, a Traditional Japanese Herbal Medicine, in Treating Cold Sensation and Numbness After Stroke: Clinical Improvement and Skin Temperature Normalization in 22 Stroke Patients, Neurol. Med. Chir, 50, pp. 1-6, (2010)
hcfmusp.relation.referenceHegedus B., The Potential Role of Thermography in Determining the Efficacy of Stroke Rehabilitation, J. Stroke Cerebrovasc. Dis, 27, 2, pp. 309-314, (2018)
hcfmusp.relation.referenceJones B.F., Plassmann P., Digital infrared thermal imaging of human skin, IEEE Eng. Med. Biol. Mag, 21, 6, pp. 41-48, (2002)
hcfmusp.relation.referenceKatan M., Luft A., Global Burden of Stroke, Semin. Neurol, 38, 2, pp. 208-211, (2018)
hcfmusp.relation.referenceMulley G., Axillary temperature differences in hemiplegia, Postgrad. Med. J, 56, 654, pp. 248-249, (1980)
hcfmusp.relation.referenceNaver H., Blomstrand C., Ekholm S., Jensen C., Karlsson T., Wallin G., Autonomic and thermal sensory symptoms and dysfunction after stroke, Stroke, 26, 8, pp. 1379-1385, (1995)
hcfmusp.relation.referenceNowak I., Mraz M., Mraz M., Thermography assessements of spastic lower limb in patients after cerebral sgtroke undergoing rehabilitation, J. Therm. Anal. Calorim, 140, pp. 755-762, (2020)
hcfmusp.relation.referencePaolucci S., Antonucci G., Grasso M.G., Bragoni M., Coiro P., De Angelis D., Fusco F.R., Morelli D., Venturiero V., Troisi E., Pratesi L., Functional outcome of ischemic and hemorrhagic stroke patients after inpatient rehabilitation, Stroke, 34, 12, pp. 2861-2865, (2003)
hcfmusp.relation.referenceRa J.Y., An S., Lee G.H., Kim T.U., Lee S.J., Hyun J.K., Skin temperature changes in patients with unilateral lumbosacral radiculopathy, Ann. Rehabil. Med, 37, 3, pp. 355-363, (2013)
hcfmusp.relation.referenceRing F., Thermal imaging today and its relevance to diabetes, J. Diabetes Sci. Technol, 4, pp. 857-862, (2010)
hcfmusp.relation.referenceRing E.F., Ammer K., Infrared thermal imaging in medicine, Physiol. Meas, 33, 3, pp. R33-R46, (2012)
hcfmusp.relation.referenceSacco R.L., Kasner S.E., Broderick J.P., Caplan L.R., Connors J.J., Culebras A., Elkind M.S., George M.G., Hamdan A.D., Higashida R.T., Hoh B.L., Janis L.S., Kase C.S., Kleindorfer D.O., Lee J.M., Moseley M.E., Peterson E.D., Turan T.N., Valderrama A.L., Vinters H.V., An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association, Stroke, 44, 7, pp. 2064-2089, (2013)
hcfmusp.relation.referenceSzentkuti A., Kavanagh H.S., Grazio S., Infrared thermography and image analysis for biomedical use, Periodicum biologorum, 113, 4, pp. 385-392, (2011)
hcfmusp.relation.referenceTattersall G.J., Infrared thermography: A non-invasive window into thermal physiology, Comp. Biochem. Physiol. A Mol. Integr. Physiol, 202, pp. 78-98, (2016)
hcfmusp.relation.referenceThurston N.M., Kent B., Jewell M.J., Blood H., Thermographic evaluation of the painful shoulder in the hemiplegic patient, Phys. Ther, 66, 9, pp. 1376-1381, (1986)
hcfmusp.relation.referenceUematsu S., Edwin D.H., Jankel W.R., Kozilowski J., Trattner M., Quantification of thermal asymmetry. Part 1: Normal values and reproducibility, J Neurosurg, 69, pp. 552-555, (1988)
hcfmusp.relation.referenceUematsu S., Jankel W.R., Edwin D.H., Quantification of thermal asymmetry. Part 2: Application in low-back pain and sciatica, J. Neurosurg, 69, 4, pp. 556-561, (1988)
hcfmusp.relation.referenceWanklyn P., Forster A., Young J., Mulley G., Prevalence and associated features of the cold hemiplegic arm, Stroke, 26, 10, pp. 1867-1870, (1995)
hcfmusp.relation.referenceWanklyn P., Ilsley D.W., Greennstein D., Hampton I.F., Roper T.A., Kester R.C., Mulley G.P., The cold hemipleg arm, Stroke, 25, 9, pp. 1765-1770, (1994)
hcfmusp.relation.referenceWinward C.E., Halligan P.W., Wade D.T., The Rivermead Assessment of Somatosensory Performance (RASP): Standardization and reliability data, Clin. Rehabil, 16, 5, pp. 523-533, (2002)
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublicationc2a1ba35-117e-4d1c-9a6e-6ceec095baf7
relation.isAuthorOfPublication1e472304-e384-4271-bfc1-dbf326b83721
relation.isAuthorOfPublicationd1d70547-3974-41df-8582-da1ee37b1f5b
relation.isAuthorOfPublication.latestForDiscovery1e472304-e384-4271-bfc1-dbf326b83721
Arquivos