Organ doses evaluation for chest computed tomography procedures with TL dosimeters: Comparison with Monte Carlo simulations

Carregando...
Imagem de Miniatura
Citações na Scopus
33
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
GIANSANTE, Louise
MARTINS, Juliana C.
NERSISSIAN, Denise Y.
KIERS, Karen C.
LEE, Choonsik
COSTA, Paulo R.
Citação
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, v.20, n.1, p.308-320, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To evaluate organ doses in routine and low-dose chest computed tomography (CT) protocols using an experimental methodology. To compare experimental results with results obtained by the National Cancer Institute dosimetry system for CT (NCICT) organ dose calculator. To address the differences on organ dose measurements using tube current modulation (TCM) and fixed tube current protocols. Methods: An experimental approach to evaluate organ doses in pediatric and adult anthropomorphic phantoms using thermoluminescent dosimeters (TLDs) was employed in this study. Several analyses were performed in order to establish the best way to achieve the main results in this investigation. The protocols used in this study were selected after an analysis of patient data collected from the Institute of Radiology of the School of Medicine of the University of Sao Paulo (InRad). The image quality was evaluated by a radiologist from this institution. Six chest adult protocols and four chest pediatric protocols were evaluated. Lung doses were evaluated for the adult phantom and lung and thyroid doses were evaluated for the pediatric phantom. The irradiations were performed using both a GE and a Philips CT scanner. Finally, organ doses measured with dosimeters were compared with Monte Carlo simulations performed with NCICT. Results: After analyzing the data collected from all CT examinations performed during a period of 3 yr, the authors identified that adult and pediatric chest CT are among the most applied protocol in patients in that clinical institution, demonstrating the relevance on evaluating organ doses due to these examinations. With regards to the scan parameters adopted, the authors identified that using 80 kV instead of 120 kV for a pediatric chest routine CT, with TCM in both situations, can lead up to a 28.7% decrease on the absorbed dose. Moreover, in comparison to the standard adult protocol, which is performed with fixed mAs, TCM, and ultra low- dose protocols resulted in dose reductions of up to 35.0% and 90.0%, respectively. Finally, the percent differences found between experimental and Monte Carlo simulated organ doses were within a 20% interval. Conclusions: The results obtained in this study measured the impact on the absorbed dose in routine chest CT by changing several scan parameters while the image quality could be potentially preserved.
Palavras-chave
computed tomography, dosimetry/exposure assessment, image quality, Monte Carlo simulations, organ dose
Referências
  1. AAPM, 2011, SIZ SPEC DOS EST SSD
  2. AAPM, 2014, US WAT EQU DIAM CALC
  3. Aberle DR, 2011, NEW ENGL J MED, V365, P395, DOI 10.1056/NEJMoa1102873
  4. Alibek S, 2011, ACAD RADIOL, V18, P690, DOI 10.1016/j.acra.2011.01.004
  5. [Anonymous], 1975, ICRP PUBL
  6. ARCHER B R, 1977, Medical Physics (Woodbury), V4, P315, DOI 10.1118/1.594320
  7. Attix FH, 2004, INTRO RADIOLOGICAL P
  8. Badano A, 2017, MED PHYS, V44, P1607, DOI 10.1002/mp.12187
  9. Bevington P R, 1993, COMPUT PHYS, V7, P415, DOI 10.1063/1.4823194
  10. BLAND JM, 1986, LANCET, V1, P307
  11. Bostani M, 2015, MED PHYS, V42, P958, DOI 10.1118/1.4906132
  12. Brenner DJ, 2007, NEW ENGL J MED, V357, P2277, DOI 10.1056/NEJMra072149
  13. BUNGE RE, 1987, RADIOLOGY, V163, P569, DOI 10.1148/radiology.163.2.3550886
  14. Bushberg J.T., 2011, ESSENTIAL PHYS MED I
  15. Bushong SC, 2013, RADIOLOGIC SCI TECHN
  16. Caramella C, 2018, MED PHYS, V45, P1529, DOI 10.1002/mp.12809
  17. Costa PR, 2014, PHANTOMS MED HLTH PH, P123
  18. Coursey C, 2008, AM J ROENTGENOL, V190, pW54, DOI 10.2214/AJR.07.2017
  19. Dabin J, 2016, PHYS MED BIOL, V61, P4168, DOI 10.1088/0031-9155/61/11/4168
  20. Fujii K, 2015, RADIAT PROT DOSIM, V165, P166, DOI 10.1093/rpd/ncv074
  21. Giansante L, 2017, THESIS
  22. Giansante L, 2018, PHYS MEDICA, V47, P16, DOI 10.1016/j.ejmp.2018.02.009
  23. Giavarina D, 2015, BIOCHEM MEDICA, V25, P141, DOI 10.11613/BM.2015.015
  24. GOLIKOV VY, 1989, HEALTH PHYS, V56, P111
  25. Gonzaga NB, 2014, APPL RADIAT ISOTOPES, V83, P242, DOI 10.1016/j.apradiso.2013.07.017
  26. Gudjonsdottir Jonina, 2010, Radiol Technol, V81, P309
  27. Hess EP, 2014, J PATIENT SAF, V10, P52, DOI 10.1097/PTS.0b013e3182948b1a
  28. Huang Y, 2018, PHYS MEDICA, V48, P72, DOI 10.1016/j.ejmp.2018.03.011
  29. Hubbell J. H., 2004, TABLES XRAY MASS ATT
  30. HUDA W, 1984, HEALTH PHYS, V47, P463
  31. Huda W, 2010, MED PHYS, V37, P842, DOI 10.1118/1.3298015
  32. IAEA, 2014, IAEA HUM HLTH SER, V24
  33. IAEA, 2007, IAEA TECHNICAL REPOR, V457
  34. ICRP, 2000, ANN ICRP, V30
  35. Jarvinen H, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.3.031214
  36. Kalender WA, 2011, COMPUTED TOMOGRAPHY
  37. Karmazyn B, 2015, AM J ROENTGENOL, V204, P861, DOI 10.2214/AJR.14.12762
  38. Kesner A, 2018, MED PHYS, V45, pE40, DOI 10.1002/mp.12794
  39. Khawaja RDA, 2015, EUR J RADIOL, V84, P2, DOI 10.1016/j.ejrad.2014.09.022
  40. Lee C, 2008, MED PHYS, V35, P2366, DOI 10.1118/1.2912178
  41. Lee C, 2015, J RADIOL PROT, V35, P891, DOI 10.1088/0952-4746/35/4/891
  42. Lee C, 2010, PHYS MED BIOL, V55, P339, DOI 10.1088/0031-9155/55/2/002
  43. Li XA, 2011, MED PHYS, V38, P397, DOI 10.1118/1.3515839
  44. Long DJ, 2013, MED PHYS, V40, DOI 10.1118/1.4771934
  45. Martins JC, 2015, IFMBE PROC, V51, P689, DOI 10.1007/978-3-319-19387-8_169
  46. Martins JC, 2015, THESIS
  47. Mathews JD, 2013, BMJ-BRIT MED J, V346, pf2360, DOI [DOI 10.1136/BMJ.F2360, 10.1136/bmj.f2360]
  48. McKeever S. W. S., 1985, THERMOLUMINESCENCE S
  49. Mettler FA, 2008, RADIOLOGY, V248, P254, DOI 10.1148/radiol.2481071451
  50. MINI RL, 1995, RADIOLOGY, V195, P557, DOI 10.1148/radiology.195.2.7724783
  51. Nagatani Y, 2015, EUR J RADIOL, V84, P1401, DOI 10.1016/j.ejrad.2015.03.012
  52. Papadakis AE, 2008, MED PHYS, V35, P4567, DOI 10.1118/1.2977535
  53. Rehani MM, 2015, RADIAT PROT DOSIM, V165, P67, DOI 10.1093/rpd/ncv063
  54. Reina TR, 2014, THESIS
  55. Samei E, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.3.031201
  56. Sinclair L, 2015, RADIOLOGY, V277, P471, DOI 10.1148/radiol.2015140971
  57. Smith-Bindman R, 2011, RADIOLOGY, V261, P999, DOI 10.1148/radiol.11111055
  58. Turner AC, 2010, MED PHYS, V37, P1816, DOI 10.1118/1.3368596
  59. Widmann G, 2015, INT J ORAL MAX SURG, V44, P441, DOI 10.1016/j.ijom.2015.01.011
  60. Winslow JF, 2009, J APPL CLIN MED PHYS, V10, P195, DOI 10.1120/jacmp.v10i3.2986