Subtelomeric Copy Number Variations: The Importance of 4p/4q Deletions in Patients with Congenital Anomalies and Developmental Disability

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
KARGER
Citação
CYTOGENETIC AND GENOME RESEARCH, v.149, n.4, p.241-246, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The most prevalent structural variations in the human genome are copy number variations (CNVs), which appear predominantly in the subtelomeric regions. Variable sizes of 4p/4q CNVs have been associated with several different psychiatric findings and developmental disability (DD). We analyzed 105 patients with congenital anomalies (CA) and developmental and/or intellectual disabilities (DD/ID) using MLPA subtelomeric specific kits (P036 /P070) and 4 of them using microarrays. We found abnormal subtelomeric CNVs in 15 patients (14.3%), including 8 patients with subtelomeric deletions at 4p/4q (53.3%). Additional genomic changes were observed at 1p36, 2q37.3, 5p15.3, 5q35.3, 8p23.3, 13q11, 14q32.3, 15q11.2, and Xq28/Yq12. This indicates the prevalence of independent deletions at 4p/4q, involving PIGG, TRIML2, and FRG1. Furthermore, we identified 15 genes with changes in copy number that contribute to neurological development and/or function, among them CRMP1, SORCS2, SLC25A4, and HELT. Our results highlight the association of genes with changes in copy number at 4p and 4q subtelomeric regions and the DD phenotype. Cytogenomic characterization of additional cases with distal deletions should help clarifying the role of subtelomeric CNVs in neurological diseases. (C) 2016 S. Karger AG, Basel
Palavras-chave
4p/4q deletion, Arrays, Developmental disability, MLPA, Subtelomeric copy number variations
Referências
  1. Ballif BC, 2007, AM J MED GENET A, V143A, P1850, DOI 10.1002/ajmg.a.31842
  2. de Vries BBA, 2003, J MED GENET, V40, P385, DOI 10.1136/jmg.40.6.385
  3. Fernandez L, 2005, CLIN GENET, V68, P373, DOI 10.1111/j.1399-0004.2005.00493.x
  4. Hermey G, 2004, J NEUROCHEM, V88, P1470, DOI 10.1046/j.1471-4159.2004.02286.x
  5. Higurashi M, 2012, DEV NEUROBIOL, V72, P1528, DOI 10.1002/dneu.22017
  6. Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211
  7. Huang DW, 2009, NUCLEIC ACIDS RES, V37, P1, DOI 10.1093/nar/gkn923
  8. Jehee FS, 2011, EUR J MED GENET, V54, pE425, DOI 10.1016/j.ejmg.2011.03.007
  9. Kearney HM, 2011, GENET MED, V13, P680, DOI 10.1097/GIM.0b013e3182217a3a
  10. Leonard H, 2002, MENT RETARD DEV D R, V8, P117, DOI 10.1002/mrdd.10031
  11. Miller DT, 2010, AM J HUM GENET, V86, P749, DOI 10.1016/j.ajhg.2010.04.006
  12. Nakatani T, 2004, J BIOL CHEM, V279, P16356, DOI 10.1074/jbc.M311740200
  13. Nakatani T, 2007, DEVELOPMENT, V134, P2783, DOI 10.1242/dev.02870
  14. NIELSEN J, 1991, HUM GENET, V87, P81, DOI 10.1007/BF01213097
  15. Ravnan JB, 2006, J MED GENET, V43, P478, DOI 10.1136/jmg.2005.036350
  16. Schouten JP, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/gnf056
  17. Shaffer LG, 2005, GENET MED, V7, P650, DOI 10.1097/01.gim.0000186545.83160.le
  18. Shaffer LG, 2000, ANNU REV GENET, V34, P297, DOI 10.1146/annurev.genet.34.1.297
  19. Shao L, 2008, AM J MED GENET A, V146A, P2242, DOI 10.1002/ajmg.a.32399
  20. Vorstman JAS, 2006, HUM MUTAT, V27, P814, DOI 10.1002/humu.20330
  21. WOLF U, 1965, HUMANGENETIK, V1, P397
  22. Zollino M, 2008, AM J MED GENET C, V148C, P257, DOI 10.1002/ajmg.c.30190
  23. Zollino M, 2007, HUM GENET, V122, P423, DOI 10.1007/s00439-007-0412-5