<i>Toxoplasma gondii</i> in CD36-/- mice shows lethal infection and poor immunization with probable macrophage immune defects

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
Citação
PARASITOLOGY RESEARCH, v.122, n.6, p.1283-1291, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Experimental toxoplasmosis is an excellent model for adaptive immune response. Gamma-irradiated tachyzoites or soluble tachyzoite antigen extracts (STag) induce protection against experimental toxoplasmosis in mice. Scavenger receptors recognize irradiated proteins, promote their entry into cells, and lead to antigen presentation. CD36 is a specific scavenger receptor involved in intracellular transport of free fatty acid (FFA), cellular recycling, and intracellular trafficking in lipid rafts outside the lysosomal pathways. CD36 is also associated with an altered immune response, as CD36(-/-) mice presented some immune defects in the cyst-forming Toxoplasma gondii. We studied T. gondii infection in CD36(-/-) mice, naive or immunized, with irradiated T. gondii STags by investigating protection, antibody production, and primed macrophage transplantation. CD36(-/-) mice presented no resistance against the viable RH tachyzoites, even after immunization with gamma-irradiated STags that protected wild-type mice. The animals presented poor humoral responses to both immunogens despite adequate levels of serum immunoglobulins. CD36(-/-) mice failed to induce protection against virulent T. gondii infection with inadequate antibody production or an innate response. Irradiated antigens failed to induce antibodies in CD36(-/-) mice and only produced adequate levels of immunoglobulin G when transplanted with irradiated STag-primed wild-type macrophages. The CD36 pathway is necessary for humoral response against the irradiated antigen; however, several other pathways are also involved in mounting a humoral response against any antigen. CD36 is a multipurpose molecule for FFA and lipid transport, as well as for the immune response, and gamma radiation mimics the innate response by targeting irradiated antigens of this pathway.
Palavras-chave
Scavenger receptor, STag, Gamma radiation, CD36, Toxoplasmosis, Toxoplasma gondii, Macrophage, Immune response, Knockout mice
Referências
  1. Barth ND, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01708
  2. Blum JS, 2013, ANNU REV IMMUNOL, V31, P443, DOI 10.1146/annurev-immunol-032712-095910
  3. Burnside K, 2012, J INFECT DIS, V206, P1734, DOI 10.1093/infdis/jis579
  4. Cardi B. A., 1998, Natural Toxins, V6, P19, DOI 10.1002/(SICI)1522-7189(199802)6:1<19::AID-NT1>3.0.CO;2-R
  5. Chen ZD, 2016, J AM SOC MASS SPECTR, V27, P1626, DOI 10.1007/s13361-016-1438-5
  6. da Costa A, 2020, INT J RADIAT BIOL, V96, P697, DOI 10.1080/09553002.2020.1704298
  7. da Costa A, 2018, BIOMED PHARMACOTHER, V106, P599, DOI 10.1016/j.biopha.2018.06.155
  8. Dolasia K, 2018, INT REV IMMUNOL, V37, P3, DOI 10.1080/08830185.2017.1397656
  9. DoNascimento N, 1996, TOXICON, V34, P123, DOI 10.1016/0041-0101(95)00111-5
  10. El-Sayed A, 2013, MOL THER, V21, P1118, DOI 10.1038/mt.2013.54
  11. Fertey J, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8110319
  12. Germic N, 2019, CELL DEATH DIFFER, V26, P715, DOI 10.1038/s41418-019-0297-6
  13. Gough PJ, 2000, MICROBES INFECT, V2, P305, DOI 10.1016/S1286-4579(00)00297-5
  14. Halle S, 2017, TRENDS IMMUNOL, V38, P432, DOI 10.1016/j.it.2017.04.002
  15. Hawkins CL, 2001, BBA-BIOENERGETICS, V1504, P196, DOI 10.1016/S0005-2728(00)00252-8
  16. He CF, 2021, AUTOPHAGY, V17, P3577, DOI 10.1080/15548627.2021.1885183
  17. Hill D, 2002, CLIN MICROBIOL INFEC, V8, P634, DOI 10.1046/j.1469-0691.2002.00485.x
  18. Hiramoto RM, 2002, VACCINE, V20, P2072, DOI 10.1016/S0264-410X(02)00054-3
  19. Holm S, 2021, EUR HEART J, V42, P4064, DOI 10.1093/eurheartj/ehab506
  20. Huang MN, 2020, J CLIN INVEST, V130, P774, DOI 10.1172/JCI128267
  21. Ilca T, 2020, CURR OPIN IMMUNOL, V64, P146, DOI 10.1016/j.coi.2020.06.004
  22. Kettle AJ, 1997, REDOX REP, V3, P3, DOI 10.1080/13510002.1997.11747085
  23. Kondo K, 2019, INT IMMUNOL, V31, P119, DOI 10.1093/intimm/dxy081
  24. Kumar BV, 2018, IMMUNITY, V48, P202, DOI 10.1016/j.immuni.2018.01.007
  25. Lin H, 2017, FREE RADICAL BIO MED, V104, P20, DOI 10.1016/j.freeradbiomed.2017.01.006
  26. Luiken JJFP, 2020, BBA-MOL BASIS DIS, V1866, DOI 10.1016/j.bbadis.2020.165775
  27. Montoya JG, 2004, LANCET, V363, P1965, DOI 10.1016/S0140-6736(04)16412-X
  28. Mulcahy LA, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.24641
  29. PINHO JRR, 1995, INT J LEPROSY, V63, P381
  30. Reisz JA, 2014, ANTIOXID REDOX SIGN, V21, P260, DOI 10.1089/ars.2013.5489
  31. Rosales C, 2020, J LEUKOCYTE BIOL, V108, P377, DOI 10.1002/JLB.4MIR0220-574RR
  32. Watson GF, 2019, EXP PARASITOL, V196, P55, DOI 10.1016/j.exppara.2018.12.003
  33. Yang CW, 2010, J IMMUNOL, V185, P2927, DOI 10.4049/jimmunol.1001289
  34. Zhang QB, 2016, CELL PHYSIOL BIOCHEM, V39, P89, DOI 10.1159/000445608
  35. Zhao YL, 2021, J IMMUNOL, V207, P1507, DOI 10.4049/jimmunol.2100605
  36. Zorgi NE, 2016, MED MICROBIOL IMMUN, V205, P297, DOI 10.1007/s00430-015-0447-5
  37. Zorgi NE, 2011, IMMUNOL LETT, V138, P187, DOI 10.1016/j.imlet.2011.04.007