<i>Toxoplasma gondii</i> in CD36-/- mice shows lethal infection and poor immunization with probable macrophage immune defects

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorCOSTA, Andrea da
dc.contributor.authorJR, Heitor Franco de Andrade
dc.date.accessioned2024-02-15T14:53:21Z
dc.date.available2024-02-15T14:53:21Z
dc.date.issued2023
dc.description.abstractExperimental toxoplasmosis is an excellent model for adaptive immune response. Gamma-irradiated tachyzoites or soluble tachyzoite antigen extracts (STag) induce protection against experimental toxoplasmosis in mice. Scavenger receptors recognize irradiated proteins, promote their entry into cells, and lead to antigen presentation. CD36 is a specific scavenger receptor involved in intracellular transport of free fatty acid (FFA), cellular recycling, and intracellular trafficking in lipid rafts outside the lysosomal pathways. CD36 is also associated with an altered immune response, as CD36(-/-) mice presented some immune defects in the cyst-forming Toxoplasma gondii. We studied T. gondii infection in CD36(-/-) mice, naive or immunized, with irradiated T. gondii STags by investigating protection, antibody production, and primed macrophage transplantation. CD36(-/-) mice presented no resistance against the viable RH tachyzoites, even after immunization with gamma-irradiated STags that protected wild-type mice. The animals presented poor humoral responses to both immunogens despite adequate levels of serum immunoglobulins. CD36(-/-) mice failed to induce protection against virulent T. gondii infection with inadequate antibody production or an innate response. Irradiated antigens failed to induce antibodies in CD36(-/-) mice and only produced adequate levels of immunoglobulin G when transplanted with irradiated STag-primed wild-type macrophages. The CD36 pathway is necessary for humoral response against the irradiated antigen; however, several other pathways are also involved in mounting a humoral response against any antigen. CD36 is a multipurpose molecule for FFA and lipid transport, as well as for the immune response, and gamma radiation mimics the innate response by targeting irradiated antigens of this pathway.eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipFAPESP [14/17029-4, 13/04676-9]
dc.description.sponsorshipCAPES [88881.5702232/2020-01]
dc.description.sponsorshipLIMHCFMUSP
dc.identifier.citationPARASITOLOGY RESEARCH, v.122, n.6, p.1283-1291, 2023
dc.identifier.doi10.1007/s00436-023-07828-0
dc.identifier.eissn1432-1955
dc.identifier.issn0932-0113
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/58052
dc.language.isoeng
dc.publisherSPRINGEReng
dc.relation.ispartofParasitology Research
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright SPRINGEReng
dc.subjectScavenger receptoreng
dc.subjectSTageng
dc.subjectGamma radiationeng
dc.subjectCD36eng
dc.subjectToxoplasmosiseng
dc.subjectToxoplasma gondiieng
dc.subjectMacrophageeng
dc.subjectImmune responseeng
dc.subjectKnockout miceeng
dc.subject.otherprotectioneng
dc.subject.othermyeloperoxidaseeng
dc.subject.othertachyzoiteseng
dc.subject.othermechanismseng
dc.subject.otherradiationeng
dc.subject.wosParasitologyeng
dc.title<i>Toxoplasma gondii</i> in CD36-/- mice shows lethal infection and poor immunization with probable macrophage immune defectseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalCOSTA, Andrea da:Univ Sao Paulo, Sch Med, Dept Pathol, Protozool Lab, Ave Dr Eneas Carvalho Aguiar, 470, 1St Floor, BR-05403000 Sao Paulo, SP, Brazil
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcHEITOR FRANCO DE ANDRADE JUNIOR
hcfmusp.description.beginpage1283
hcfmusp.description.endpage1291
hcfmusp.description.issue6
hcfmusp.description.volume122
hcfmusp.origemWOS
hcfmusp.origem.pubmed36988683
hcfmusp.origem.scopus2-s2.0-85151256873
hcfmusp.origem.wosWOS:000960383300001
hcfmusp.publisher.cityNEW YORKeng
hcfmusp.publisher.countryUNITED STATESeng
hcfmusp.relation.referenceBarth ND, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01708eng
hcfmusp.relation.referenceBlum JS, 2013, ANNU REV IMMUNOL, V31, P443, DOI 10.1146/annurev-immunol-032712-095910eng
hcfmusp.relation.referenceBurnside K, 2012, J INFECT DIS, V206, P1734, DOI 10.1093/infdis/jis579eng
hcfmusp.relation.referenceCardi B. A., 1998, Natural Toxins, V6, P19, DOI 10.1002/(SICI)1522-7189(199802)6:1<19::AID-NT1>3.0.CO;2-Reng
hcfmusp.relation.referenceChen ZD, 2016, J AM SOC MASS SPECTR, V27, P1626, DOI 10.1007/s13361-016-1438-5eng
hcfmusp.relation.referenceda Costa A, 2020, INT J RADIAT BIOL, V96, P697, DOI 10.1080/09553002.2020.1704298eng
hcfmusp.relation.referenceda Costa A, 2018, BIOMED PHARMACOTHER, V106, P599, DOI 10.1016/j.biopha.2018.06.155eng
hcfmusp.relation.referenceDolasia K, 2018, INT REV IMMUNOL, V37, P3, DOI 10.1080/08830185.2017.1397656eng
hcfmusp.relation.referenceDoNascimento N, 1996, TOXICON, V34, P123, DOI 10.1016/0041-0101(95)00111-5eng
hcfmusp.relation.referenceEl-Sayed A, 2013, MOL THER, V21, P1118, DOI 10.1038/mt.2013.54eng
hcfmusp.relation.referenceFertey J, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8110319eng
hcfmusp.relation.referenceGermic N, 2019, CELL DEATH DIFFER, V26, P715, DOI 10.1038/s41418-019-0297-6eng
hcfmusp.relation.referenceGough PJ, 2000, MICROBES INFECT, V2, P305, DOI 10.1016/S1286-4579(00)00297-5eng
hcfmusp.relation.referenceHalle S, 2017, TRENDS IMMUNOL, V38, P432, DOI 10.1016/j.it.2017.04.002eng
hcfmusp.relation.referenceHawkins CL, 2001, BBA-BIOENERGETICS, V1504, P196, DOI 10.1016/S0005-2728(00)00252-8eng
hcfmusp.relation.referenceHe CF, 2021, AUTOPHAGY, V17, P3577, DOI 10.1080/15548627.2021.1885183eng
hcfmusp.relation.referenceHill D, 2002, CLIN MICROBIOL INFEC, V8, P634, DOI 10.1046/j.1469-0691.2002.00485.xeng
hcfmusp.relation.referenceHiramoto RM, 2002, VACCINE, V20, P2072, DOI 10.1016/S0264-410X(02)00054-3eng
hcfmusp.relation.referenceHolm S, 2021, EUR HEART J, V42, P4064, DOI 10.1093/eurheartj/ehab506eng
hcfmusp.relation.referenceHuang MN, 2020, J CLIN INVEST, V130, P774, DOI 10.1172/JCI128267eng
hcfmusp.relation.referenceIlca T, 2020, CURR OPIN IMMUNOL, V64, P146, DOI 10.1016/j.coi.2020.06.004eng
hcfmusp.relation.referenceKettle AJ, 1997, REDOX REP, V3, P3, DOI 10.1080/13510002.1997.11747085eng
hcfmusp.relation.referenceKondo K, 2019, INT IMMUNOL, V31, P119, DOI 10.1093/intimm/dxy081eng
hcfmusp.relation.referenceKumar BV, 2018, IMMUNITY, V48, P202, DOI 10.1016/j.immuni.2018.01.007eng
hcfmusp.relation.referenceLin H, 2017, FREE RADICAL BIO MED, V104, P20, DOI 10.1016/j.freeradbiomed.2017.01.006eng
hcfmusp.relation.referenceLuiken JJFP, 2020, BBA-MOL BASIS DIS, V1866, DOI 10.1016/j.bbadis.2020.165775eng
hcfmusp.relation.referenceMontoya JG, 2004, LANCET, V363, P1965, DOI 10.1016/S0140-6736(04)16412-Xeng
hcfmusp.relation.referenceMulcahy LA, 2014, J EXTRACELL VESICLES, V3, DOI 10.3402/jev.v3.24641eng
hcfmusp.relation.referencePINHO JRR, 1995, INT J LEPROSY, V63, P381eng
hcfmusp.relation.referenceReisz JA, 2014, ANTIOXID REDOX SIGN, V21, P260, DOI 10.1089/ars.2013.5489eng
hcfmusp.relation.referenceRosales C, 2020, J LEUKOCYTE BIOL, V108, P377, DOI 10.1002/JLB.4MIR0220-574RReng
hcfmusp.relation.referenceWatson GF, 2019, EXP PARASITOL, V196, P55, DOI 10.1016/j.exppara.2018.12.003eng
hcfmusp.relation.referenceYang CW, 2010, J IMMUNOL, V185, P2927, DOI 10.4049/jimmunol.1001289eng
hcfmusp.relation.referenceZhang QB, 2016, CELL PHYSIOL BIOCHEM, V39, P89, DOI 10.1159/000445608eng
hcfmusp.relation.referenceZhao YL, 2021, J IMMUNOL, V207, P1507, DOI 10.4049/jimmunol.2100605eng
hcfmusp.relation.referenceZorgi NE, 2016, MED MICROBIOL IMMUN, V205, P297, DOI 10.1007/s00430-015-0447-5eng
hcfmusp.relation.referenceZorgi NE, 2011, IMMUNOL LETT, V138, P187, DOI 10.1016/j.imlet.2011.04.007eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublicationb5fc75ec-2c91-4919-b3f0-d26daa51c626
relation.isAuthorOfPublication.latestForDiscoveryb5fc75ec-2c91-4919-b3f0-d26daa51c626
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_COSTA_iToxoplasma_gondiii_in_CD36_mice_shows_lethal_infection_2023.PDF
Tamanho:
973.16 KB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)