Relationship Between Regional Brain Volumes and Cognitive Performance in the Healthy Aging: An MRI Study Using Voxel-Based Morphometry

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
IOS PRESS
Citação
JOURNAL OF ALZHEIMERS DISEASE, v.31, n.1, p.45-58, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The presence of cognitive impairment is a frequent complaint among elderly individuals in the general population. This study aimed to investigate the relationship between aging-related regional gray matter (rGM) volume changes and cognitive performance in healthy elderly adults. Morphometric magnetic resonance imaging (MRI) measures were acquired in a community-based sample of 170 cognitively-preserved subjects (66 to 75 years). This sample was drawn from the ""Sao Paulo Ageing and Health"" study, an epidemiological study aimed at investigating the prevalence and risk factors for Alzheimer's disease in a low income region of the city of Sao Paulo. All subjects underwent cognitive testing using a cross-culturally battery validated by the Research Group on Dementia 10/66 as well as the SKT (applied on the day of MRI scanning). Blood genotyping was performed to determine the frequency of the three apolipoprotein E allele variants (APOE epsilon 2/epsilon 3/epsilon 4) in the sample. Voxelwise linear correlation analyses between rGM volumes and cognitive test scores were performed using voxel-based morphometry, including chronological age as covariate. There were significant direct correlations between worse overall cognitive performance and rGM reductions in the right orbitofrontal cortex and parahippocampal gyrus, and also between verbal fluency scores and bilateral parahippocampal gyral volume (p < 0.05, familywise-error corrected for multiple comparisons using small volume correction). When analyses were repeated adding the presence of the APOE epsilon 4 allele as confounding covariate or excluding a minority of APOE epsilon 2 carriers, all findings retained significance. These results indicate that rGM volumes are relevant biomarkers of cognitive deficits in healthy aging individuals, most notably involving temporolimbic regions and the orbitofrontal cortex.
Palavras-chave
Cognitive decline, healthy aging, structural MRI, voxel-based morphometry
Referências
  1. Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018
  2. Berlau DJ, 2009, NEUROLOGY, V72, P829, DOI 10.1212/01.wnl.0000343853.00346.a4
  3. Brett M, 2002, NAT REV NEUROSCI, V3, P243, DOI 10.1038/nrn756
  4. Chee MWL, 2009, NEUROIMAGE, V46, P257, DOI 10.1016/j.neuroimage.2009.01.036
  5. Chiang GC, 2011, RADIOLOGY, V259, P844, DOI 10.1148/radiol.11101637
  6. Cole L, 2010, DEMENT GERIATR COGN, V30, P387, DOI 10.1159/000320589
  7. COPELAND JRM, 1986, PSYCHOL MED, V16, P89
  8. Cuadra MB, 2005, IEEE T MED IMAGING, V24, P1548, DOI 10.1109/TMI.2005.857652
  9. Curiati PK, 2009, AM J NEURORADIOL, V30, P1850, DOI 10.3174/ajnr.A1727
  10. Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146
  11. Ferreira LK, 2011, NEUROBIOL AGING, V32, P1733, DOI 10.1016/j.neurobiolaging.2009.11.008
  12. Flaks MK, 2006, INT PSYCHOGERIATR, V18, P121, DOI 10.1017/S1041610205002577
  13. Fujimoto T, 2008, PSYCHIAT RES-NEUROIM, V164, P58, DOI 10.1016/j.pscychresns.2006.12.014
  14. Garrido GEJ, 2002, J NEUROL NEUROSUR PS, V73, P508, DOI 10.1136/jnnp.73.5.508
  15. Golomb J, 1996, NEUROLOGY, V47, P810
  16. Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786
  17. von Gunten A, 2009, J AM GERIATR SOC, V57, P2118, DOI 10.1111/j.1532-5415.2009.02523.x
  18. Hall KS, 1993, INT J METH PSYCH RES, P1
  19. Honea RA, 2009, J ALZHEIMERS DIS, V18, P553, DOI 10.3233/JAD-2009-1163
  20. Jack CR, 2000, NEUROLOGY, V55, P484
  21. Kapogiannis D, 2011, LANCET NEUROL, V10, P187, DOI 10.1016/S1474-4422(10)70277-5
  22. Kramer JH, 2007, NEUROPSYCHOLOGY, V21, P412, DOI 10.1037/0894-4105.21.4.412
  23. Lehfeld H, 1997, Int Psychogeriatr, V9 Suppl 1, P115, DOI 10.1017/S104161029700478X
  24. Lehfeld H, 1997, Int Psychogeriatr, V9, P139, DOI 10.1017/S1041610297004304
  25. Leoni V, 2011, CLIN CHEM LAB MED, V49, P375, DOI 10.1515/CCLM.2011.088
  26. Leube DT, 2008, INT J GERIATR PSYCH, V23, P1114, DOI 10.1002/gps.2036
  27. Madden DJ, 2011, BIOCHIM BIOPHYS ACTA, V1822, P386
  28. Mechelli A, 2005, J NEUROSCI, V25, P8303, DOI 10.1523/JNEUROSCI.0357-05.2005
  29. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  30. Mosconi L, 2008, NEUROBIOL AGING, V29, P676, DOI 10.1016/j.neurobiolaging.2006.12.008
  31. Prince M, 2007, BMC PUBLIC HEALTH, V7, DOI 10.1186/1471-2458-7-165
  32. Prince M, 2003, LANCET, V361, P909, DOI 10.1016/S0140-6736(03)12772-9
  33. Raz N, 2006, NEUROSCI BIOBEHAV R, V30, P730, DOI 10.1016/j.neubiorev.2006.07.001
  34. Resnick SM, 2007, ANN NY ACAD SCI, V1121, P562, DOI 10.1196/annals.1401.027
  35. Salmond CH, 2002, NEUROIMAGE, V17, P1027, DOI 10.1006/nimg.2002.1153
  36. Scazufca M, 2008, INT PSYCHOGERIATR, V20, P394, DOI 10.1017/S1041610207005625
  37. Sexton CE, 2010, PSYCHIAT RES-NEUROIM, V184, P57, DOI 10.1016/j.pscychresns.2010.07.005
  38. Small BJ, 2004, PSYCHOL AGING, V19, P592, DOI 10.1037/0882-7974.19.4.592
  39. Smith CD, 2007, NEUROBIOL AGING, V28, P1075, DOI 10.1016/j.neurobiolaging.2006.05.018
  40. Taki Y, 2011, BRAIN COGNITION, V75, P170, DOI 10.1016/j.bandc.2010.11.008
  41. Terribilli D, 2011, NEUROBIOL AGING, V32, P354, DOI 10.1016/j.neurobiolaging.2009.02.008
  42. Valenzuela MJ, 2011, BIOL PSYCHIAT, V71, P783
  43. Xu Y, 2008, NEUROIMAGE, V40, P1003, DOI 10.1016/j.neuroimage.2007.12.034
  44. Ziegler D. A., 2008, NEUROBIOL AGING, V31, P1912
  45. Zimmerman ME, 2006, AM J GERIAT PSYCHIAT, V14, P823, DOI 10.1097/01.JGP.0000238502.40963.ac