Epistasis between COMT Val(158)Met and DRD3 Ser(9)Gly polymorphisms and cognitive function in schizophrenia: genetic influence on dopamine transmission

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRASILEIRA PSIQUIATRIA
Citação
REVISTA BRASILEIRA DE PSIQUIATRIA, v.37, n.3, p.235-241, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: To assess the relationship between cognitive function, a proposed schizophrenia endophenotype, and two genetic polymorphisms related to dopamine function, catechol-O-methyl transferase (COMT) Val(158)Met and dopamine receptor 3 (DRD3) Ser(9)Gly. Methods: Fifty-eight outpatients with schizophrenia/schizoaffective disorder and 88 healthy controls underwent neurocognitive testing and genotyping. Analyses of covariance (ANCOVAs) using age, sex, and years of education as covariates compared cognitive performance for the proposed genotypes in patients and controls. ANCOVAs also tested for the epistatic effect of COMT and DRD3 genotype combinations on cognitive performance. Results: For executive functioning, COMT Val/Val patients performed in a similar range as controls (30.70-33.26 vs. 35.53-35.67), but as COMT Met allele frequency increased, executive functioning worsened. COMT Met/Met patients carrying the DRD3 Ser/Ser genotype performed poorest (16.184 vs. 27.388-31.824). Scores of carriers of this COMT/DRD3 combination significantly differed from all DRD3 Gly/Gly combinations (p < 0.05), from COMT Val/Met DRD3 Ser/Gly (p = 0.02), and from COMT Val/Val DRD3 Ser/Ser (p = 0.01) in patients. It also differed significantly from all control scores (p < 0.001). Conclusion: Combined genetic polymorphisms related to dopamine neurotransmission might influence executive function in schizophrenia. Looking at the effects of multiple genes on a single disease trait (epistasis) provides a comprehensive and more reliable way to determine genetic effects on endophenotypes.
Palavras-chave
Endophenotype, psychosis, genetics, dopamine, executive function
Referências
  1. Nakajima S, 2013, EUR NEUROPSYCHOPHARM, V23, P799, DOI 10.1016/j.euroneuro.2013.05.006
  2. Colzato LS, 2010, NEUROPSYCHOLOGIA, V48, P2764, DOI 10.1016/j.neuropsychologia.2010.04.023
  3. Wirgenes KV, 2010, SCHIZOPHR RES, V122, P31, DOI 10.1016/j.schres.2010.05.007
  4. Eisenegger C, 2014, NEUROPSYCHOPHARMACOL, V39, P2366, DOI 10.1038/npp.2014.84
  5. Peerbooms O, 2012, ACTA PSYCHIAT SCAND, V125, P247, DOI 10.1111/j.1600-0447.2011.01806.x
  6. Sheehan DV, 1998, J CLIN PSYCHIAT, V59, P22, DOI 10.4088/JCP.09m05305whi
  7. Goldberg TE, 2004, TRENDS COGN SCI, V8, P325, DOI 10.1016/j.tics.2004.05.011
  8. Okochi T, 2009, SCHIZOPHR RES, V110, P140, DOI 10.1016/j.schres.2009.02.019
  9. van Os J, 2008, SCHIZOPHRENIA BULL, V34, P1066, DOI 10.1093/schbul/sbn117
  10. Savitz J, 2006, GENES BRAIN BEHAV, V5, P311, DOI 10.1111/j.1601-183X.2005.00163.x
  11. Elvevag B, 2000, CRIT REV NEUROBIOL, V14, P1
  12. LAITINEN J, 1994, BIOTECHNIQUES, V17, P316
  13. Lane HY, 2008, J PSYCHIATR NEUROSCI, V33, P47
  14. Nieratschker V, 2010, SCHIZOPHR RES, V122, P24, DOI 10.1016/j.schres.2010.06.018
  15. Bombin I, 2008, AM J MED GENET B, V147B, P873, DOI 10.1002/ajmg.b.30710
  16. FREMEAU RT, 1991, P NATL ACAD SCI USA, V88, P3772, DOI 10.1073/pnas.88.9.3772
  17. Lee SY, 2011, WORLD J BIOL PSYCHIA, V12, P385, DOI 10.3109/15622975.2010.505298
  18. Howes OD, 2009, SCHIZOPHRENIA BULL, V35, P549, DOI 10.1093/schbul/sbp006
  19. Zhang FQ, 2011, AM J MED GENET B, V156B, P613, DOI 10.1002/ajmg.b.31203
  20. Utsunomiya K, 2008, NEUROSCI LETT, V444, P161, DOI 10.1016/j.neulet.2008.08.005
  21. Talkowski ME, 2008, HUM MOL GENET, V17, P747, DOI 10.1093/hmg/ddm347
  22. Hughes VA, 2002, AM J CLIN NUTR, V76, P473
  23. Fathalli F, 2008, SCHIZOPHR RES, V98, P98, DOI 10.1016/j.schres.2007.07.002
  24. Bilder RM, 2002, BIOL PSYCHIAT, V52, P701, DOI 10.1016/S0006-3223(02)01416-6
  25. Costas J, 2011, J PSYCHIATR RES, V45, P7, DOI 10.1016/j.jpsychires.2010.04.021
  26. Nolan KA, 2004, AM J PSYCHIAT, V161, P359, DOI 10.1176/appi.ajp.161.2.359
  27. Rybakowski JK, 2005, J NEURAL TRANSM, V112, P1575, DOI 10.1007/s00702-005-0292-6
  28. Snitz BE, 2006, SCHIZOPHRENIA BULL, V32, P179, DOI 10.1093/schbul/sbi048
  29. Shaikh S, 1996, HUM GENET, V97, P714
  30. Hosak L, 2007, EUR PSYCHIAT, V22, P276, DOI 10.1016/j.eurpsy.2007.02.002
  31. Cropley VL, 2006, BIOL PSYCHIAT, V59, P898, DOI 10.1016/j.biopsych.2006.03.004
  32. Glatt SJ, 2003, AM J PSYCHIAT, V160, P469, DOI 10.1176/appi.ajp.160.3.469
  33. Heinz A, 2010, SCHIZOPHRENIA BULL, V36, P472, DOI 10.1093/schbul/sbq031
  34. Tsai SJ, 2004, NEUROPSYCHOBIOLOGY, V49, P196, DOI 10.1159/000077366
  35. Kohlrausch FB, 2008, PHARMACOGENET GENOM, V18, P599, DOI 10.1097/FPC.0b013e328301a763
  36. Raz N, 2009, NEUROPSYCHOLOGY, V23, P105, DOI 10.1037/a0013487
  37. van der Werf M, 2012, ACTA PSYCHIAT SCAND, V126, P274, DOI 10.1111/j.1600-0447.2012.01873.x
  38. Sharma A, 2011, ACTA PSYCHIAT SCAND, V123, P125, DOI 10.1111/j.1600-0447.2010.01603.x
  39. Szekeres G, 2004, AM J MED GENET B, V124B, P1, DOI 10.1002/ajmg.b.20045
  40. Wass C, 2013, LEARN MEMORY, V20, P617, DOI 10.1101/lm.031971.113
  41. Le Strat Y, 2009, CURR MOL MED, V9, P506
  42. Glessner JT, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-9-236
  43. Laitinen J, 1994, BIOTECHNIQUES, V17, P320
  44. Laitinen J, 1994, BIOTECHNIQUES, V17, P318
  45. Lakhan Shaheen E, 2009, Ann Gen Psychiatry, V8, P12, DOI 10.1186/1744-859X-8-12
  46. Matsumoto M, 2003, NEUROSCIENCE, V116, P127, DOI 10.1016/S0306-4522(02)00556-0