Human fetal wound healing: a review of molecular and cellular aspects

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
EUROPEAN JOURNAL OF PLASTIC SURGERY, v.39, n.4, p.239-246, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The physiological answer to after birth skin lesions is scarring, which compromises the function and the aesthetics of the injured area. However, fetuses in early gestation (24 weeks or less) respond to this damage with skin regeneration. To explain this difference, several factors are considered, such as increased production of collagen III in fetal fibroblasts and increased presence of this collagen in the skins of these fetuses. Increased hyaluronic acid in fetal matrix correlates with greater capacity for migration of fibroblasts in scarless repair. The fact that myofibroblasts in the wound appear only after the fetal stage of pregnancy which forms scars can also be correlated. Additionally, there is an increase in the amount of adhesion molecules in repair without scarring, which would multiply cell adhesion and migration. Lower levels of bTGF1 in fetal wound are correlated with reduced amounts of collagen I and may be the result of higher relative expression of bTGF3, which downregulates bTGF1. Amniotic fluid itself might be a stimulating factor to human skin's fibroblasts proliferation through cytokines such as bFGF and PDGF. A hypoxic environment in the fetal wound, associated with increased presence of Dot cells in blood, is also observed, and both facts can be related to a difference in the repair of the skin. Distinct gene expression guides those different responses and may also help to elucidate fetal skin regeneration. When the mechanisms responsible for the absence of scars in wounded fetuses are enlightened, it will be a significant mark in the studies of wound cicatrization and its therapeutic applications shall be extremely valuable.
Palavras-chave
Fetal fibroblast, Fetal collagen, Fetal cicatrization, Scarless healing, Amniotic fluid
Referências
  1. Akita S, 2013, ADV WOUND CARE NEW R, V2, P44, DOI [DOI 10.1089/WOUND.2011.0324, 10.1089/wound.2011.0324]
  2. Atala A, 2011, PRINCIPLES OF REGENERATIVE MEDICINE, 2ND EDITION, P1
  3. Balaji S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124302
  4. Begnaud S, 2016, CURR OPIN CELL BIOL, V42, P52
  5. Bielefeld KA, 2013, CELL MOL LIFE SCI, V70, P2059, DOI 10.1007/s00018-012-1152-9
  6. Chuang J, 2016, SURG J, V2, pe17
  7. Colwell A, 2005, WOUND HEALING, P9
  8. Coolen NA, 2010, ARCH DERMATOL RES, V302, P47, DOI 10.1007/s00403-009-0989-8
  9. Decker CG, 2016, BIOMATERIALS, V81, P157, DOI 10.1016/j.biomaterials.2015.12.003
  10. Degen KE, 2012, BIRTH DEFECTS RES C, V96, P258, DOI 10.1002/bdrc.21019
  11. Farhadieh R, 2015, PLAST RECONSTR SURG
  12. Fernandez-Godino R, 2016, ADV EXP MED BIOL, V854, P53, DOI 10.1007/978-3-319-17121-0_8
  13. Helmo FR, 2013, DIS MARKERS, P939, DOI 10.1155/2013/567353
  14. Hu MS, 2014, J SURG RES, V190, P344, DOI 10.1016/j.jss.2014.02.030
  15. Hu MS, 2014, ADV WOUND CARE, V3, P304
  16. Kachgal S, 2012, CELL ADHES MIGR, V6, P457, DOI 10.4161/cam.22164
  17. Klein JD, 2011, STEM CELLS DEV, V20, P969, DOI 10.1089/scd.2010.0379
  18. Koch S, 2012, CSH PERSPECT MED, V2, DOI 10.1101/cshperspect.a006502
  19. Kong W, 2010, CLIN EXP PHARMACOL P, V37, pe136, DOI 10.1111/j.1440-1681.2010.05343.x
  20. Kong WY, 2008, EXP CELL RES, V314, P1529, DOI 10.1016/j.yexcr.2008.01.022
  21. Larson BJ, 2010, PLAST RECONSTR SURG, V126, P1172, DOI 10.1097/PRS.0b013e3181eae781
  22. Leduc C, 2016, BBA-GEN SUBJECTS, V1860, P1071, DOI 10.1016/j.bbagen.2016.02.009
  23. Lee YS, 2012, BIRTH DEFECTS RES C, V96, P213, DOI 10.1002/bdrc.21017
  24. Leitinger B, 2015, RECEPTOR TYROSINE KI, P79
  25. Lenselink EA, 2015, INT WOUND J, V12, P313, DOI 10.1111/iwj.12109
  26. Leung A, 2012, CURR OPIN PEDIATR, V24, P371, DOI 10.1097/MOP.0b013e3283535790
  27. Lo DD, 2012, BIRTH DEFECTS RES C, V96, P237, DOI 10.1002/bdrc.21018
  28. MAST BA, 1992, SURG GYNECOL OBSTET, V174, P441
  29. Matsuura-Hachiya Y, 2015, BIOCH BIOPHYSICS REP, V4, P180
  30. Mazzone L, 2014, PEDIATR SURG INT, V30, P1241, DOI 10.1007/s00383-014-3614-7
  31. Farhadieh RD, 2015, PLASTIC AND RECONSTRUCTIVE SURGERY: APPROACHES AND TECHNIQUES, P1, DOI 10.1002/9781118655412
  32. Namazi MR, 2011, INT J DERMATOL, V50, P85, DOI 10.1111/j.1365-4632.2010.04678.x
  33. Nyman E, 2015, GUIDED REGENERATION, V1450
  34. Penn Jack W, 2012, Int J Burns Trauma, V2, P18
  35. Pritchard MT, 2015, CURR DRUG TARGETS, V16, P1332, DOI 10.2174/1389450116666150825111439
  36. Reinke JM, 2012, EUR SURG RES, V49, P35, DOI 10.1159/000339613
  37. Rolfe KJ, 2012, ISRN DERMATOL, V2012
  38. Schoenwolf GC, 2009, LARSEN EMBRIOLOGIA H, P184
  39. Sennett R, 2015, SCIENCE, V348, P284, DOI 10.1126/science.aab0120
  40. Sriram G, 2015, EUR J CELL BIOL, V94, P483, DOI 10.1016/j.ejcb.2015.08.001
  41. Tang JB, 2016, EXPERT OPIN BIOL TH, V16, P291, DOI 10.1517/14712598.2016.1134479
  42. Walraven M, 2016, CELLULAR MOL MECH VO
  43. Wong WJ, 2015, J INVEST DERMATOL, V135, P454, DOI 10.1038/jid.2014.283
  44. Wulff BC, 2012, J INVEST DERMATOL, V132, P458, DOI 10.1038/jid.2011.324
  45. Xue ML, 2015, ADV WOUND CARE, V4, P119, DOI 10.1089/wound.2013.0485
  46. Yang QQ, 2015, CHINESE MED J-PEKING, V128, P2787, DOI 10.4103/0366-6999.167359
  47. Yates CC, 2012, BIRTH DEFECTS RES C, V96, P325, DOI 10.1002/bdrc.21024
  48. Young AM, 2015, SECRECION TGF BETA3
  49. Zheng JX, 2014, DERMATOL SURG, V40, P511, DOI 10.1111/dsu.12474