Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
HOSPITAL CLINICAS, UNIV SAO PAULO
Citação
CLINICS, v.68, n.2, p.231-237, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg(-1) in the C group and 40 mL.kg(-1) in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts.
Palavras-chave
Xenon, Hemorrhagic Shock, General Anesthesia
Referências
  1. Baumert JH, 2008, BRIT J ANAESTH, V100, P605, DOI 10.1093/bja/aen050
  2. Baumert JH, 2007, BRIT J ANAESTH, V98, P722, DOI 10.1093/bja/aem083
  3. Baumert JH, 2005, BRIT J ANAESTH, V94, P727, DOI 10.1093/bja/aei127
  4. Baumert JH, 2009, J CARDIOTHOR VASC AN, V23, P614, DOI 10.1053/j.jvca.2009.01.028
  5. Baumert JH, 2005, ACTA ANAESTH SCAND, V49, P743, DOI 10.1111/j.1399-6576.2004.00662.x
  6. Braz JRC, 2005, ANESTH ANALG, V100, P1867
  7. Coburn M, 2005, BRIT J ANAESTH, V94, P198, DOI 10.1093/bja/aei023
  8. CULLEN SC, 1951, SCIENCE, V113, P580, DOI 10.1126/science.113.2942.580
  9. Francis RCE, 2010, SHOCK, V34, P628, DOI 10.1097/SHK.0b013e3181e682f9
  10. Franks NP, 1998, NATURE, V396, P324, DOI 10.1038/24525
  11. Hanss R, 2006, BRIT J ANAESTH, V96, P427, DOI 10.1093/bja/ael028
  12. Hartlage MAG, 2004, ANESTH ANALG, V99, P655, DOI 10.1213/01.ANE.0000129999.74324.4E
  13. Hein M, 2010, ACTA ANAESTH SCAND, V54, P470, DOI 10.1111/j.1399-6576.2009.02116.x
  14. Hopper J, 1944, J CLIN INVEST, V23, P628, DOI 10.1172/JCI101533
  15. LACHMANN B, 1990, LANCET, V335, P1413
  16. LANE GA, 1980, SCIENCE, V210, P899, DOI 10.1126/science.7434002
  17. LUTTROPP HH, 1993, ANAESTHESIA, V48, P1045
  18. Marx T, 1997, BRIT J ANAESTH, V78, P326
  19. Mio Y, 2009, ANESTH ANALG, V108, P858, DOI 10.1213/ane.0b013e318192a520
  20. Nalos M, 2001, BRIT J ANAESTH, V87, P497, DOI 10.1093/bja/87.3.497
  21. PITTINGER CB, 1953, ANESTHESIOLOGY, V14, P10, DOI 10.1097/00000542-195301000-00002
  22. PRIST R, 1992, CIRC SHOCK, V36, P13
  23. Schroth SC, 2002, ANESTHESIOLOGY, V96, P422, DOI 10.1097/00000542-200202000-00030
  24. Schwiebert C, 2010, EUR J ANAESTH, V27, P734, DOI 10.1097/EJA.0b013e328335fc4c
  25. Stowe DF, 2000, ANESTHESIOLOGY, V92, P516, DOI 10.1097/00000542-200002000-00035
  26. Wappler F, 2007, ANESTHESIOLOGY, V106, P463, DOI 10.1097/00000542-200703000-00010
  27. Weber NC, 2008, ANESTH ANALG, V107, P1807, DOI [10.1213/ane.Ob013e31818874bf, 10.1213/ane.0b013e31818874bf]